期刊文献+

具有马尔可夫调制的随机微分方程数值解的收敛性(英文)

Convergence of Numerical Solutions to Stochastic Differential Equations with Markovian Switching
下载PDF
导出
摘要 本文在无穷维Hilbert空间中研究了一类具有马尔可夫调制的随机微分方程(SDEwMSs).在一般情况下SDEwMSs没有解析解.因此合适的数值逼近法,例如欧拉法,就是在研究它们性质时所采用的重要工具.本文在较弱的条件下不仅证明了欧拉近似解收敛于SDEwMSs的精确解(分析解),而且给出了欧拉近似阶的界. This paper studies a class of stochastic different equations with Markovian switching (SDEwMSs) in the infinite dimensional Hilbert space. In general SDEwMSs do not have explicit solutions. Appropriate numerical approximations, such as the Euler scheme, are therefore a vital tool in exploring their porperties. In this paper,it is proved that the Euler approximate solutions will converge to the exact solutions for SDEwMSs under weaker conditions. The bound to the order of the Euler approximation is also provided.
出处 《应用数学》 CSCD 北大核心 2005年第4期521-527,共7页 Mathematica Applicata
关键词 随机微分方程 Markovian调制 EULER法 Stochastic differential equation Markovian switching Euler scheme
  • 相关文献

参考文献6

  • 1Ji Y. Chizeck H J. Controllability. stabilizability and continuous-time Markovian jump linear quadratic control[J]. IEEE. Trans. Automat. Control. 1990.35:777-788.
  • 2Athans M. Command and control (C2) theory: a challenge to control science [J].IEEE Trans. Automat.Control, 1987,32:286 - 293.
  • 3Mao Xuerong. Stability of stochastic differential equations with Markovian switching[J].Stochastic Processes and their Applications. 1999.79 : 45 - 67.
  • 4Basak G K,Bisi A,Ghosh M K. Stability ot a random diffusion with linear drift[J]. J. Math. Anal. Appl. ,1996,202:604-622.
  • 5Yuan Chenggui, Mao Xuerong. Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching[J].Math. Comput. Simulation, 2004,64 : 223 - 235.
  • 6Anderson W J. Continuous-time Markov Chains[M]. Berlin: Springer. 1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部