期刊文献+

股票收益率非正态性的蒙特卡罗模拟检验 被引量:18

The Test of non-normal Distribution of Stock Returns with Monte Carlo Simulation and The Explanation
下载PDF
导出
摘要 现实金融数据的分布通常表现为厚尾性和不对称性,因此用正态分布拟合实际金融数据的分布有很大的局限性.文章利用广义双曲线分布的厚尾性和不对称性对1997年1月2日~2003年9月19日的上证综指日收益率分布分别做了正态分布、广义双曲线分布、正态逆高斯分布和双曲线分布的拟合及蒙特卡罗模拟检验,结果表明广义双曲线分布和正态逆高斯分布可以较好地拟合上证综指日收益率分布.另外,文章还建立了一个带噪声干扰的线性系统,对实际的股票收益率并不服从正态分布,而表现出尖峰厚尾的特征做出了一种可能的解释. The distribution of financial data is usually fat-tailed and asymmetric, so it is not proper to fit the real tinanclal data by normal distribution. This paper fits the returns of Shanghai Composite using generalized hyperblic distribution and tests its goodness-of-fit. The results of test show that the daily log-return of Shanghai Composite can be well described by generalized hyperbolic distribution and normal inverse Gaussian distribution. The fact of non-normal distribution can be well explained by a simple linear system with noise.
出处 《财经研究》 CSSCI 北大核心 2005年第10期34-41,52,共9页 Journal of Finance and Economics
关键词 厚尾性 不对称性 广义双曲线分布 正态逆高斯分布 蒙特卡罗模拟 fat-tailed asymmetry generalized hyperbolic distribution nomal inverse Gaussian distribution Monte Carlo simulation
  • 相关文献

参考文献13

  • 1何建敏,朱林,常松.中国股票市场价格波动的尺度特性[J].中国管理科学,2003,11(1):1-5. 被引量:18
  • 2R Mantegna, H Stanley. Scaling behavior in the dynamics of an economic index[J]. Nature, 1995,(376): 46-49.
  • 3Jose Santiago, Fajardo Barbachan, Aquiles Rocha de Farias, Jose Renato Haas Ornelas. Analyzing the use of generalized hyperbolic distributions to value at risk calculations[R], working paper, 2002, Banco Central do Brasil.
  • 4B Mandelbrot. The variation of certain speculative prices[J].Journal of Business, 1963,(36) : 394-419.
  • 5M Yu Romanovsky. Truncated levy distribution of SP500 stock index distribution of one-share fluctuations in a model space[J].Physica A, 2000, (287) : 450-460.
  • 6Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size [A]. Proceedings of the Royal Society London A, 1977. 401-419.
  • 7E Eberlein, U Keller,K Prause. New Insights into smile,mispricing and value at risk: the hyperbolic model [J].Journal of Business, 1998,( 71): 371-405.
  • 8Jose Santiago, Fajardo Barbachan, Aquiles Rocha de Farias, Jose Renato Haas Ornelas. Goodness-of-fit tests focus on VaR estimation[R]. working paper, Banco Central do Brasil , 2002.
  • 9Prause K. The generalized hyperbolic model: Estimation, financial derivatives, and risk measures [A]. Tese de Doutorado, University of Freiburg, 1999.
  • 10T Vaga. The coherent market hypothesis[J]. Financial Analysts Journal, 1990, (46) : 36449.

二级参考文献11

共引文献23

同被引文献182

引证文献18

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部