期刊文献+

信息集成中基于描述器的对象匹配

Describer-relied object matching in information integration
下载PDF
导出
摘要 提出基于描述器的对象匹配(DROM)方法,通过增加一个私有属性关联层来扩展已有的方案,从而提高匹配正确率。探讨对象匹配环境中的知识重用,包括知识类型的重用和任务无关分类器的重用。实验结果表明,增加描述器能使DROM获得更多的匹配知识,从而可以提高DROM的匹配正确率。 Describer-relied object matching (DROM) is proposed, which extends previous solutions by adding a layer that correlates private attributes to enhance matching accuracy. Knowledge reuse in the object-matching context, including knowledge type reuse and task-irrelative classifier reuse is discussed. The experimental result shows that adding more describers can make DROM access more matching knowledge, therefore the accuracy of DROM might be enhanced.
出处 《上海海事大学学报》 北大核心 2005年第3期72-76,共5页 Journal of Shanghai Maritime University
基金 国家863资助项目(2002AA134020-04)
关键词 对象匹配 描述器 信息集成 相似度 基于描述器的对象匹配(DROM) object matching describer information integration similarity describer-relied object matching ( DROM )
  • 相关文献

参考文献8

  • 1HERNANDEZ M, STOLFO S. The merge/purge problem for large databases [ A]. Proc. 1995 ACM SIGMOD Int' 1 Conf. Management of Data: SIGMOD 95[C]. ACM Press. 1995. 127 - 138.
  • 2BILENKO M, MOONEY R. Learning to combine trained distance metrics for duplicate detection in databases[ R]. Tech. report AI,02 - 296. Artificial Intelligence Laboratory: Univ. Texas at Austin,2002.
  • 3SARAWAGI S, BHAMIDIPATY A. Interactive deduplication using active learning [ A ]. Proc. 8th ACM SIGKDD Int'l Conf.Knowledge Discovery and Data Mining: SIGKDD 02 [ C ]. ACM Press. 2002. 269 - 278.
  • 4MONGE A, ELDAN C. The field matching problem: algorithms and applications [ A]. Proc. 2nd ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining[ C]. AAAI Press, 1996. 267 - 270.
  • 5ANANTHAKRISHNA R, CHAUDHURI S, GANTI V. Eliminating fuzzy duplicates in data warehouses [ A ]. Proc. 28th Int' l Conf.Very Large Databases: VLDB 2002 [ C ]. Morgan Kaufmann. 2002.586 - 597.
  • 6DOAN A, DOMINGOS P, HALEVY A. Reconciling schemas of disparate data sources: a machine learning approach [ A ]. Proc.ACM SIGMOD Int' l Conf. Management of Data: SIGMOD 01 [ C].ACM Press. 2001. 509 -520.
  • 7LI W, HAN J, PEI J. CMAR: accurate and efficient classification based on multiple class-association rules [ A ]. Proc. Int' l Conf.Data Mining[C]. IEEE CS Press. 2001. 369 -376.
  • 8TEJADA S, KNOBLOCK C, MINTON S. Learning domain-independent string transformation weights for high accuracy object identification[ A]. Proc. 8th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining: SIGKDD 02[ C]. ACM Press. 2002.350 - 359.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部