期刊文献+

散斑分数傅里叶联合变换相关测量研究

Research on the measurement of speckle displacement with joint fractional Fourier transform correlation
下载PDF
导出
摘要 提出数字散斑联合变换分数相关测量方法,利用分数相关可以锐化相关峰的作用,在数字散斑联合变换相关运算中用分数傅里叶变换代替傅里叶变换,提高测量精度.通过对散斑图像进行相位调制,有效地解决了分数傅里叶变换的移变性带来的谱移问题.编程模拟和对拉伸试件位移场测量的结果表明,只要选择合适的分数傅里叶变换级次和相位调制函数,可以使相关峰的半宽度从4~5pixel锐化到仅1pixel,得到优于傅里叶变换相关的理想输出. A method for the measurement of speckle displacement with joint fractional Fourier transform Correlation is presented. It performs fractional Fourier transform instead of Fourier transform in joint Fourier transform correlation to obtain better recognition peak. By using phase modulation to the speckle pattern,, the shifting problem of fractional domain spectrum from the shift-variant property of fractional Fourier transform is effectively solved. The results from simulation and measurement for the displacement field of object to be stretched indicate that this method is feasible. The semi-width of recognition peak is sharpened from 4-5pixels to lpixel and the Fractional Correlation peaks can be optimized by choosing the transform orders and phase modulation function.
出处 《光电工程》 EI CAS CSCD 北大核心 2005年第9期47-50,共4页 Opto-Electronic Engineering
关键词 傅里叶变换 数字散斑 联合变换相关 相位调制 Fourier transform Digital speckles Joint Fourier transform correlation Phase modulation
  • 相关文献

参考文献6

  • 1Kutay M.A,Ozaktas H.M. Optimal filtering in fractional Fourier domains[J]. IEEE Trans Sig Proc,1997,45(5):1129-1141.
  • 2Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. Lnst Maths Applics,1980,25(1):241-265.
  • 3D.Mendlovic,H.M.Ozakatas. Fractional Fourier transform and their optical implementation [J]. Opt.Soc.Am.A,1993,10:1875-1881.
  • 4Lohmann A W. Image rotation,Wigner rotation and the Fractional Fourier transform[J]. Opt.Soc.Am.A,1993,10:2181-2186.
  • 5王金婵,赵永安,王西安.应用联合分数傅里叶变换相关器识别多个物体[J].光子学报,2002,31(6):681-684. 被引量:7
  • 6Z.Zalevsky,D.Mendlovic,J.H.Caulfield. Fractional correlator with real-time control of the space-invariance property[J]. Appl Opt,1997,36(11):2370-2375.

二级参考文献7

  • 1[1]Lugt A V.Signal detection by complex spatial filtering.IEEE Tans Infor Theory IT,1964,10(1):139~145
  • 2[2]Weaver C S,Goodman J W.A technique for optically convolving two functions.Appl Opt,1966,5(5):1248~1249
  • 3[3]Mendlovic D,Ozaktas H M.Fractional Fourier transform and their optical implementation:I.J Opt Soc Am(A),1993,10(9):1875~1881
  • 4[4]Lohmann A W.Image rotation,Winger rotation,and the fractional Fourier transform.J Opt Soc Am(A),1993,10(10):2181~2186
  • 5[5]Ozaktas H M,Barshan B.Convolution filtering and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms.J Opt Soc Am(A),1994,11(2):547~559
  • 6[6]Kuo C J,Luo Y.Generalized joint fractional Fourier transform corrlators:a compact approach.Appl Opt,1998,37(35):8270~8276
  • 7[7]Almeida L M.The fractional Fourier transform and time-frequency representations.IEEE Trans Signal Process,1994,42(11):3084~3091

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部