期刊文献+

二维任意域内基于节点的局部网格生成算法 被引量:6

Node-Based Local Mesh Generation Algorithm Within an Arbitrary 2D Domain
下载PDF
导出
摘要 凸域内基于节点的局部网格生成算法,克服了基于节点的有限元方法的网格生成可能产生的不一致性。将该基于节点的局部网格生成算法的适用范围拓展到二维任意域。另外,提出了通过使用约束Delau-nay路径来划分任意域的区域划分算法,该算法使得在并行实现网格生成的过程中各处理器之间无需通信,从而大大提高了节点给定情形下有限元方法网格生成的并行效率。 A new node-based local mesh generation (NLMG) algorithm within a 2D convex domain designed for the node-based finite element method can circumvent the so-called inconsistency phenomenon. In this paper, the node-based local mesh generation algorithm is extended so that it can be applied to the 2D arbitrary domain. In addition, a new 2D arbitrary domain partition algorithm by means of searching constrained Delaunay path is proposed, which keeps the distributed processors free of communication during the process of parallel mesh generation. Thus, the enhanced parallel efficiency of mesh generation algorithm for the finite element method in the case of given nodes is achieved.
作者 常升 聂玉峰
出处 《航空学报》 EI CAS CSCD 北大核心 2005年第5期556-561,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家863计划"大规模科学计算"子项目(G1999032801)西北工业大学英才计划项目(521020101)资助项目
关键词 任意域 约束Delaunay路径 不一致性 基于节点的局部网格 区域划分算法 arbitrary domain constrained Delaunay path inconsistency node-based local mesh domain partition algorithm
  • 相关文献

参考文献7

  • 1关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14. 被引量:169
  • 2聂玉峰,常升.基于节点的局部网格生成算法[J].计算力学学报,2006,23(2):252-256. 被引量:6
  • 3Yagawa G, Furukawa T. Recent developments of free mesh method[J]. Int J Numer MethEngng, 2000, 47: 1419-1443.
  • 4Yagawa G, Hosokawa T. Application of the free mesh method with Delaunay tessellation in a 3 dimensional problem[R]. Trans the JSME Ser. A, 63- 614, 1997.2251-2256.
  • 5Sibson R. Locally equiangular triangulation [J]. The Computer Journal, 1978,21(3) : 243-245.
  • 6Blelloch G, Miller G, Talmor D. Developing a Practical projection-based parallel Delaunay algorithm [A]. Pro ACM Symposium on Computational Geometry[,C]. 1996.
  • 7Yagawa G. Node-by-node parallel finite elements: a virtually meshless method[A]. In:Mang H A, Rammerstorfer F G, Eberhardsteiner Jed. WCCM V Fifth World Congress on Computational Mechanics[C]. Vienna, Austria,2002.

二级参考文献37

共引文献171

同被引文献74

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部