期刊文献+

变分不等式解集性质的刻画 被引量:3

An Example on Variational Inequalities
下载PDF
导出
摘要 利用凸分析理论给出了无穷维Banach空间中变分不等式解集收缩锥的刻画,推广了有限维空间中刻画变分不等式解集有界性的对应结果,并通过一个例子说明了单调性假设在等价刻画解集有界性中的重要作用. The authors characterize solutions to variational inequalities in terms of recession cone and provide an example to show that a coerciveness condition is, though sufficient, not necessary for variational inequalities to have nonempty and bounded solution set.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期526-528,共3页 Journal of Sichuan Normal University(Natural Science)
基金 四川省学位委员会 四川省教育厅重点学科建设基金资助项目
关键词 变分不等式 收缩锥 解集性质 Generalized variational inequalities Recession cone Properties of solution set
  • 相关文献

参考文献8

  • 1Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[J]. Mathematical Programming, 1990,48:161 ~ 220.
  • 2Facchinei F, Pang, J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York: Springer-Verlag,2003.
  • 3Crouzeix J P. Pseudomonotone variational inequality problems: existence of solutions[ J]. Mathematical Programming, 1997,78: 305 ~ 314.
  • 4Zǎlinescu C. Convex Analysis in General Vector Spaces[ M]. River Edge:World Scientific Publishing Co. Inc,2002.
  • 5Rockafellar R T. Convex Analysis[ M ]. Princeton: Princeton University Press, 1970.
  • 6Daniildis A, Hadjisawas N. Coercivity conditions and variational inequalities[J]. Mathematical Programming, 1999,86:433 ~ 438.
  • 7Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York:John Wiley & Sons Inc,1984.
  • 8Karamardian S. Complementarity problems over cones with monotone and pseudomonotone maps[ J ]. Journal of Optimization Theory and Applications, 1976,18: 445 ~ 454.

同被引文献21

  • 1王敏,何诣然.Banach空间中集值映射的广义变分不等式问题[J].四川师范大学学报(自然科学版),2006,29(4):447-449. 被引量:6
  • 2毛秀珍,何诣然.拟单调广义向量变分不等式[J].四川师范大学学报(自然科学版),2007,30(2):134-137. 被引量:9
  • 3Daniilidis A, Hadjisavvas N. Coercivity conditions and variational Inequalities [J]. Math. Prograrn,1999 ,86(2) :433-438.
  • 4Crouzeix J P. Pseudomonotone variational inequality problems: Existence of Solutions[J]. Mathematical Programming, 1997,78(3) :305-314.
  • 5Bianchi M, Hadjisavvas N and Schaible S. Minimal Coercivity Conditions and Exceptional Families of Elements in Quasimonotone Variational Inequalities [J]. Journal of Optimization Theory and Applications,2004,122(1) : 1-17.
  • 6Hadjisavvas N. Continuity and Maximality Propertiesof Pseudomonotone Operators[J]. Journal of Convex Analysis, 2003,10(2) :465-475.
  • 7Aussel D and Hadjisavvas N. On Quasimonotone Variational Inequalities [J]. Journal of Optimization Theory and Applications, 2004,121 (2) : 445-450.
  • 8Karamardian S, Schaible S. Seven Kinds of Monotone Maps [J]. Journal of Optimization Theory and Applications, 1990,66(1) :37-46.
  • 9Hadjisavvas N, Schaible St Quasimonotone Variational Inequalities in Banach Spaces[J]. Journal of Optimization Theory and Applications, 1996,90( 1 ) : 95-111.
  • 10Hideaki I,Wataru T.Strong convergence theorems formonexpansive mappings snd inverse-strongly monotonemappings[J].Nonlinear Analysis:Theory,Methods&Applications,2005,61(3):340-350.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部