期刊文献+

时滞反应扩散方程周期解的存在性 被引量:7

Existence of Periodic Solutions of Reaction-diffusion Systems with Time Delays
下载PDF
导出
摘要 利用周期上、下解方法及Schauder不动点理论研究了一类反应项非单调的时滞反应扩散方程,构造了非单调反应项的上、下控制函数,并证明了所构造的函数满足Lipschitz条件及单调性,克服了反应项非单调无法利用上、下解方法的局限性,为讨论反应项非单调的微分方程提供了一种有效的方法,并获得了此系统边值问题周期解存在性的充分条件. In this paper, periodic solutions of reaction-diffusion systems with time delays are investigated. It is constructed that the upper and lower control function of nonmonotone reaction term, and it is showed that the function satisfies a global Lipschitz condition and quasimonotone. A sort of effective method of studying differential ecpuation with nonmonotone reaction term is gained. By using the method of upper and lower solutions and fixed point theorem, it is proved that periodic solutions of this system exist when reaction-teml is not monotone and the boundary value system has a pair of coupled-upper and lower solutions. And some known results are extended.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期542-545,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅学术与技术带头人基金资助项目
关键词 时滞 周期解 上下解 反应扩散方程 不动点理论 Delay Periodic solution Upper and lower solution Reaction-diffusion system Fixed point theorem
  • 相关文献

参考文献11

二级参考文献45

  • 1罗琦.一类偏泛函生态模型解的振动性[J].数学物理学报(A辑),1993,13(3):345-352. 被引量:9
  • 2何猛省.一类含时滞的反应扩散方程的周期解和概周期解[J].数学学报(中文版),1989,32(1):91-97. 被引量:23
  • 3徐道义.具有时滞的生物模型的全局稳定性分析[J].四川师范大学学报(自然科学版),1994,17(5):24-28. 被引量:6
  • 4[1]Brown K J, Hess P. Positive periodic solutions of predator-prey reaction-diffusion systems[J]. Nonlinear Anal, 1991,16:1147 ~ 1158.
  • 5[2]Liu B P, Pao C V. Periodic solutions of coupled semilinear parabolic boundary value probl-ems[J]. Nonlinear Anal, 1982,6:237 ~ 252.
  • 6[3]Pao C V. Periodic solution of parabolic systems with nonlinear boundary condition[J]. Math Anal Appl,1999,234:695~716.
  • 7[4]Bange D W. Periodic solutions of a quasilinear parabolic differential equation[J]. Diff Equs,1975,17:61 ~ 72.
  • 8[5]Wu J H. Theory and Applications of Partial Functional Differential Equations[M]. New York:Springer-Verlag, 1997.
  • 9[1]Freedman H I, Wu J. Periodic solutions of single-species models with periodic delay[ J]. SIAM J Math Anal, 1992,23 (3):689~701.
  • 10[2]Ahlip R A, King R R. Global asymptotic stability of a periodic system of delay logistic equations[J]. Bull Austral Math Soc, 1996,53(3):373~389.

共引文献52

同被引文献51

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部