期刊文献+

无界区域R^n上GBBM方程的指数吸引子 被引量:3

The Exponential Attractor for the GBBM Equations on Unbounded Domains R^n
下载PDF
导出
摘要 研究了无界区域Rn(n 3)上GBBM方程的长时间动力学行为ut-aΔut-bΔu+F(u)+γu=h(x),x∈Rn,t∈R+,其中F(u)满足适当条件.应用算子分解技巧和构造加权空间上紧算子等方法,通过对方程的解作先验范数估计,证明了无界区域Rn(n 3)上GBBM方程指数吸引子的存在性. This paper studied the long time behavior of solution for GBBM equations on the unbounded domains R^n(n〈3)ut-a△ut-b△u+▽·F(u)+ru=h(x),x∈R^n,t∈R^+,where ▽ F(u) satisfying given conditions. The existence of the exponential attractor for the corresponding semigroup was proved by the priori estimate. The method of the decomposition of operators and constructing compact operators with the compactness of the weighted spaces was used.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期551-555,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省应用基础研究基金资助项目
关键词 GBBM方程 无界区域 挤压性 指数吸引子 GBBM equation Unbounded domain Squeezing property Exponential attractor
  • 相关文献

参考文献2

二级参考文献16

  • 1潘杰,李树勇,黄玉梅.无界区域R^n上GBBM方程解的存在唯一性问题[J].四川师范大学学报(自然科学版),2005,28(3):291-295. 被引量:2
  • 2Benjamin T B, Bona J L, Mahony J J. Model Equations for Long Waves in Nonlinear Dispersive Systems [J]. Philos Trans Roy Soc London Ser A, 1972, 272: 47- 78.
  • 3Celebi A O, Kalantraron V K. Attractors for the Generalized Benjamin-Bona-Mahony Equations [J]. J Diff Eqs, 1999,157: 435-451.
  • 4Guo B. On Inhomogeneous GBBM Equations [J]. J Partial Diff Eqs, 1995, 8(1): 193 - 204.
  • 5Guo B. Initial Boundary Value Problem for One Class of System of Multidimensional Inhomogeneous GBBM Equations[J]. Chin Ann Math Ser B, 1987, 8:226 -238.
  • 6Teman R. Infinite Dimensional Dynamical Systems in Mechanics and Physics [M]. 2nd ed. New York: Springer-Verlag,1997.
  • 7Trieble H, Interpolation Theory, Functional Spaces, Differential Operators [M]. New York Oxford: North-Holland Amsterdam, 1978.
  • 8Hale J K. Asymptotic Behavior of Dissipative Systems [M]. Providence RI: Amer Math Soc, 1988.
  • 9Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems[ J]. Philos Trans Roy Soc Lond Ser, 1972,272A:47.
  • 10Liu Y, Wan W. Global W^2,p(2≤p≤∞) solutions of GBBM equation in arbitrary dimensions[J]. J Part Diff Eqs,1999,12:63~70.

共引文献4

同被引文献33

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部