摘要
根据SAR图像的成像机理,利用两种多尺度随机模型,即多尺度自回归(MultiscaleAutoregressive,MAR)模型和多尺度自回归滑动平均(Multiscale Aautoregressive Moving Average,MARMA)模型,分别来描述同一场景不同分辨率SAR图像像素间的统计相关性,并构造了相应的多分辨混合算法实现SAR图像的无监督分割。试验结果表明,提出的两种无监督分割方法是可行的,且MARMA模型比MAR模型能够更精确地捕捉SAR图像多尺度序列中不同类型地形的统计信息,使分割质量具有明显的改进。
According to the mechanism of SAR imaging, two unsupervised segmentation methods were proposed based on two class of multiscale stochastic model, namely multiscale autoregressive (MAR) model and multiscale autoregressive moving average (MARMA) model. These models capture the statistical information in a muhiscale sequence of SAR image, which is then used to implement unsupervised segmentation of SAR image via muhiresolution mixture algorithm. Experimental results over SAR images confirm the proposed segmentation methods are valid.
出处
《计算机应用》
CSCD
北大核心
2005年第10期2367-2369,共3页
journal of Computer Applications
基金
国家自然科学基金资助项目(60375003)
航空基础科学基金资助项目(03I53059)
关键词
SAR图像无监督分割
多尺度随机模型
多尺度自回归模型
多尺度自回归滑动平均模型
多分辨混合算法
unsupervised segmentation of SAR image
muitiscale stochastic model
multiscale autoregressive model
multiscale autoregressive moving average model
multiresolution mixture algorithm