期刊文献+

随机型细胞神经网络的稳定性 被引量:1

Stability of the Stochastic Cellular Neural Networks
下载PDF
导出
摘要 借助于李雅谱洛夫理论、矩阵分析方法和It?公式,结合不等式分析技巧,研究了随机细胞神经网络系统的均方指数稳定性,给出了系统的解的二阶矩Liapunov指数估计式和均方指数稳定的充分条件。 In this paper, the stability of stochastic cellular neural networks is studied. The cellular neural networks have become one of the hot study field internationally because of the important applications of the cellular neural networks theory. With the help of Liapunov theory, the method of matrix analysis, the mean square exponential stability of the stochastic cellular networks is studied. Then the second-order matrix Liapunov exponential estimation formula for the solution to the system is given. And the sufficient conditions of the mean square exponential stability for the solution are also given.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2005年第5期700-702,716,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金资助项目(90208003) 教育部科学技术研究重点项目(02065)
关键词 细胞 随机扰动 神经网络 均方指数稳定 cellular stochastic perturbation neural networks mean square exponential stbility
  • 相关文献

参考文献1

二级参考文献5

  • 1Chua L O,IEEE Trans Circuits Syst,1988年,35卷,1257页
  • 2Chua L O,IEEE Trans Circuits Syst,1988年,35卷,1273页
  • 3廖晓昕,中国科学.A,1994年,24卷,10期,1037页
  • 4廖晓昕,中国科学.A,1994年,24卷,9期,902页
  • 5Chua L O,Proc CNNA-90,1990年

共引文献13

同被引文献12

  • 1KWON O M, PARK J H. Improved delay dependent stability criterion for neural networks with time-varying delays[J]. Physic Letter A, 2009. 373: 529-535.
  • 2Liu L P, Han Z Z, Li W L. Global stability analysis of interval neural networks with discrete and distributed delays of neutral type[J], Expert System and Applications. 2009, 36: 7328-7331.
  • 3Wu H Q. Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz neuron activations[J]. Nonlinear Analysis: Real World Applications, 2009. 4(8): 9297-2306.
  • 4Liu Y R. Wang Z D. Liu X H. Robust stability of discrete-time stochastic neural networks with time-varying delays[J], Ncurocomputing, 2008, 71: 823-833.
  • 5Liu Y R, et al. Discrete- time recurrent neural networks with time varying delays: Exponential stability analysis[J]. Physics Letter A, 2007, 362: 480-488.
  • 6Song Q K, Wang Z D. A delay-dependent LMI approach to dynamics analysis of discrete-time rccurrent neural networks with time -varying delays[J]. Physics Letter A, 2007, 368:134 -145.
  • 7Zhang B Y, Xu S Y. Zuo Y. Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time- varying delays[J]. Neurocomputing, 2008.72: 321-330.
  • 8Song C W, et al. A new approach to stability analysis of discrete-time recurrent neural networks with time-varying delay[J].Neurocomputing(2009),doi:10.1016/j.neucom,2008.
  • 9Yu J J, Zhang K J, Fei S M. Exponential stability criteria for discrete-time recurrent neural networks with time- varying delay[J]. Nonlinear Analysis : Real World Applications (2008), doi: 10. 1016/j. no nrwa. 2008.
  • 10Zhang Y J, Xu S Y, Zeng Z P. Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay[J]. Neurocomputing (2009), doi: 10.1016/ j. neucom,2009.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部