摘要
研究了一类新的无穷簇广义集值拟变分不等式问题,利用Nadler定理,得到并构造了逼近解的迭代算法,证明了这类拟变分不等式的解的存在性及该算法产生的迭代序列的收敛性。
In this paper, we introduce and study a new class of infinite family of generalized setvalued quasi-variational inequality problems in Hilbert spaces. We construct an iterative algorithm and prove an existence of solutions for this kind of quasi-variational inequalities. We also prove the convergence of iterative sequences generated by the algorithm. The main results presented in this paper generalized some known results.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2005年第5期717-719,共3页
Journal of University of Electronic Science and Technology of China
关键词
拟变分不等式
算法
存在性
收敛性
投影
quasi-variational inequality
algorithm
existence
convergence
projection