期刊文献+

Hilbert空间中一类拟变分不等式问题

A Infinite Family of Generalized Set-Valued Quasi-Variational Inequality Problems in Hilbert Spaces
下载PDF
导出
摘要 研究了一类新的无穷簇广义集值拟变分不等式问题,利用Nadler定理,得到并构造了逼近解的迭代算法,证明了这类拟变分不等式的解的存在性及该算法产生的迭代序列的收敛性。 In this paper, we introduce and study a new class of infinite family of generalized setvalued quasi-variational inequality problems in Hilbert spaces. We construct an iterative algorithm and prove an existence of solutions for this kind of quasi-variational inequalities. We also prove the convergence of iterative sequences generated by the algorithm. The main results presented in this paper generalized some known results.
作者 撒晓婴 周武
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2005年第5期717-719,共3页 Journal of University of Electronic Science and Technology of China
关键词 拟变分不等式 算法 存在性 收敛性 投影 quasi-variational inequality algorithm existence convergence projection
  • 相关文献

参考文献4

  • 1Baiocchi C, Capelo A. Applications to Free Boundary Problems[M]. Wiley & Sons, New York, 1984
  • 2Huang N J. On the generalized implicit quasivariational inequalities [J]. J Math Anal Appl, 1997, 216:197-210
  • 3王元恒.Banach空间中无限簇广义集值变分包含[J].浙江大学学报(理学版),2004,31(4):381-386. 被引量:5
  • 4Nadler S B. Muliti-valued contraction mappings [J]. Pacific J Math, 1969, 30:475-488

二级参考文献19

  • 1NOOR M A. An implicit method for mixed variational inequalities [J]. Appl Math Lett, 1998,11 (4):109-113.
  • 2NOOR M A. Generalized multi-valued quasi-variational inequalities (Ⅱ) [J]. Comput Math Appl, 1998,35(5):63-78.
  • 3ZENG L V. Herative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality [J]. J Math Anal Appl,1996,201: 180-191.
  • 4NOOR M A. Set-valued resolvent equations and mixed variational inequalities[J]. J Math Anal Appl,1998,220:741-759.
  • 5BARBU V. Nonlinear Semigroups and Differential Equations in Banach Spaces [M]. Leyden Nehterland:Noord-hoff Iinternet Publ, 1976.
  • 6郭大均.Hammerstein型非线性积分方程的固有值[J].数学学报,1977,20(2):99-108.
  • 7NOOR M A. Generalized set-valued variatiional inclusions and resolvent equations[J]. J Math Anal Appl,1998,228:206-220.
  • 8CHANG S S,CHO Y J, LEE B S,et al. Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl, 2000,246:409-422.
  • 9CHANG S S. Set-valued variational inclusions in Banach spaces [J]. J Math Anal Appl, 2000,248: 438-454.
  • 10CHANG S S, KIM J K,KIM K H. On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach space[J]. J Math Anal Appl, 2002,268: 89-108.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部