期刊文献+

基于双密度小波变换的纹理图像检索 被引量:5

Texture Image Retrieval Based on Double Density Wavelet Transform
下载PDF
导出
摘要 为了进一步提高纹理图像的检索性能,提出了一种基于双密度小波变换算法.该算法根据双密度小波分解变换的特点,从系数角度出发首先对子带进行组合,然后提取一阶和二阶统计矩并将结果作为纹理的特征用于图像检索.由于组合双密度小波变换采用了过采样,具有时移不变性,所以据此生成的算法具有特征数少、检索精度高等特点.对比实验结果表明,该算法的检索精度比单小波和双密度小波变换分别提高了10%和7%,性能最好的是一阶和二阶统计矩组合的方法. In order to enhance the performance of the texture image retrieval, a new algorithm based on the double density wavelet transform (DDWT) was presented, which was obtained by interleaving double density wavelet transforms (IDDWT) using the characteristics of the double density wavelet decomposition and computing the first-order and the second-order statistical parameters of IDDWT as the texture feature for image retrieval. In comparison with the traditional wavelet, the pyramid discrete wavelet decomposition transforms (PDWT) utilizes the oversampled framework and has time shift invariant. This algorithm is better than those of PDWT and DDWT under the same feature extraction method and the same similarity measure. In the contrast experiment, the result shows that the retrieval efficiency of this algorithm is increased by 10% and 7%, respectively, for image retrieval. The best performance is achieved with combinatorial method of the first and second order statistical moments.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第10期1081-1084,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60473034)
关键词 双密度小波变换 图像检索 纹理图像 double density wavelet transform image retrieval texture image
  • 相关文献

参考文献5

  • 1Mallat S G. A wavelet tour of signal processing [M]. San Diego, USA: Academic Press, 1998.
  • 2Selesnick I W. Wavelets in signal and image analysis: from theory to practice [M]. Berlin:Kluwer Academic Publisher, 2001.
  • 3Fernandes F C A. Directional, shift-insensitive, complex wavelet transforms with controllable redundancy [D]. Houston, USA: Department of Computer Science, Rice University,2002.
  • 4Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data [J]. IEEE Trans Pattern Anal Machine Intell, 1996,18(8):837-842.
  • 5Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification [J]. IEEE Trans System Man Cybernetics, 1973, 8(6):610-621.

同被引文献58

  • 1王欣,于晓,隋永新,杨怀江,庞云阶.基于多小波的图像处理在电晕检测中的应用[J].光学精密工程,2006,14(4):714-719. 被引量:9
  • 2林滨,黄新雁,魏莹,王岚.加工表面形貌测量理论、方法及评价[J].制造业自动化,2006,28(8):14-18. 被引量:7
  • 3方勇华,孔超,兰天鸽,熊伟,董大明,李大成.应用小波变换实现光谱的噪声去除和基线校正[J].光学精密工程,2006,14(6):1088-1092. 被引量:44
  • 4马建军,郑志强,吴美平.MIMU信号频谱分析及降噪方法[J].光学精密工程,2007,15(2):261-266. 被引量:2
  • 5JAYAWARDENA A. Design of double density wavelet filter banks [ C ]//Proceedings of 7th International Symposium on Signal Processing and its Applications. Paris, France.2003 : 463-466.
  • 6LI Huifen, CHEUNG C F, JIANG X Q, et al. A novel robust Gaussian filtering method for the characterization of surface generation in ultra-precision machining. [ J ]. Precision Engineering, 2006,30 ( 4 ) :421-430.
  • 7CHEN X, RAJA J, SIMNANAPALI S. Muhi-scale analysis of engineering surfaces [ J]. Int J Mach Tools Manufacture, 1995,35 (2) :231-238.
  • 8RAJA J, MURALIKRISHNAN B, SHENG Yufu. Recent advances in separation of roughness, waviness and form [ J ]. Precision Engineering, 2002, 26 (2) : 222-235.
  • 9JOSSO B, BURTON D R, LALOR M J. Frequency nor- malized wavelet transform for surface roughness analysis and characterization [ J ]. Wear, 2002,252 ( 545 ) : 491- 500.
  • 10JIANG X, BLUNT L, STOUT K J. Three-dimensional surface characterization for orthopaedic joint prostheses [ J ]. Journal of Inst Mech Eng, Part H,1999,213(1) :49-68.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部