期刊文献+

数据流上加权共享滑动窗口的连接查询处理算法 被引量:2

Processing Shared Weight Sliding Window Join on Data Streams
下载PDF
导出
摘要 在数据流应用中,系统经常需要处理大量的滑动窗口连续查询,采用共享滑动窗口技术可以有效节省存储空间,提高系统整体的查询处理能力。但是共享滑动窗口技术会增大单个查询的响应延迟,降低单个查询的服务质量。针对这个问题,论文提出了加权共享滑动窗口的概念,并提出了三种优化的连接执行算法,优先响应重要的滑动窗口查询,从而提高了系统整体的服务质量。理论分析和实验结果表明论文提出的方法是行之有效的。 In many data stream applications,there is a large amount of sliding window continuous queries need to be processed synchronously.The processing technique based on shared sliding window can save the memory efficiently, thereby improve the whole system processing performance.However,one disadvantage of this technique is that it increases the response time for each sliding window query.To address this problem,this paper proposes the concept of shared weight sliding window,and three join algorithms on shared weight sliding window,which can response the important sliding window query firstly,and consequently improve the QoS of the processing system.Both the theoretical analysis and experimental results show that the methods axe effective.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第27期160-163,共4页 Computer Engineering and Applications
基金 国家自然科学基金(编号:60273082)
关键词 数据流 加权滑动窗口 连接 data streams,weight sliding window,shared join
  • 相关文献

参考文献7

  • 1Brian Babcock ,Shivnath Babu ,Mayur Datar et al.Models and Issues in Data Stream Systems[C].In : Proc ACM SIGACT-SIGMOD Symp on Principles of Database Systems,2002:1~16
  • 2S Madden,M Shah,J M Hellerstein et al. Continuously Adaptive Continuous Queries over Streams[C].In:SIGMOD,2002:49~60
  • 3S Chandrasekaran,M J Franklin. Streaming Queries over Streaming Data[C].In :Proc of the 28th Int Conf on Very Large Data Bases,2002: 203~214
  • 4A Arasu,B Babcock,S Babu et al. Characterizing Memory Requirements for Queries over Continuous Data Streams[C].In :Proc ACM SIGACTSIGMOD Symp on Principles of Database Systems,2002:221~232
  • 5Jaewoo Kang,Jeffery F Naughton,Stratis D Viglas.Evaluating Window Joins over Unbounded Streams[C].In:ICDE Conference 2003
  • 6Lukasz Golab ,M Tamer Ozsu. Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams[R].Waterloo University Technical Report CS-2003-01,2003-02
  • 7Moustafa A Hammad,Michael J Franklin,Walid G Aref et al. Scheduling for shared window joins Over Data Streams[C].In:Proc of the 29th Int Conf on VLDB,2003

同被引文献12

  • 1方金和,冯雁,王瑞杰.基于数据挖掘的自适应入侵检测研究[J].计算机工程与应用,2006,42(18):152-154. 被引量:4
  • 2LEE W,STOLFO S J,MOK K W.A data mining framework for building intrusion detection models[C] //Proc of IEEE Symposium on Security and Privacy.Berlin:Springer,1999:120-132.
  • 3GOLAB L,OZSU M T.Issues in data stream management[J].ACM SIGMOD Record,2003,32(2):5-14.
  • 4M'Garofalakis.J.Gelirke and R.Rastogi.Querying and Mining Data Streams:You Only Get One Look [C].ln the tutorial notes of VLDB.2002.
  • 5L.Golab,M.T.ozsu. Issues in Data Stream Management[C].ln Proc.OfACM SIGMOD.2003.
  • 6L.Golab,M.T.ozsu.Data Stream Management lssues-A survey [R].Technical Repon,CS2003-08 University of Waterioo.
  • 7P.B.Gibbons,Y.Matias.Synopsis Data Structures [C].ln Proc. Of SODA. 1999.
  • 8姜远,刘力平.数据流挖掘技术[J].江南大学学报(自然科学版),2007,6(6):654-657. 被引量:2
  • 9尹志武,黄上腾.一种自适应局部概念漂移的数据流分类算法[J].计算机科学,2008,35(2):138-139. 被引量:8
  • 10陈照阳,黄上腾.流数据分类中的概念漂移问题研究[J].计算机应用与软件,2009,26(2):254-256. 被引量:12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部