期刊文献+

Rudimentary结构等价性及其应用研究

Research on the Theory and Application of Rudimentary Structure Equivalence
下载PDF
导出
摘要 Bayesian网的结构学习是Bayesian网研究的难点之一.当问题中的变量较多时,通过结构学习得到的网络结构往往不 具有唯一性.文中通过对Bayesian网鳍相等价性的研究,提出了Rudimentary结构等价性定理,并给出了谈定理的证明.该等价 性定理为提高结构学习的速度和优化Bayesian网的结构提供了理论依据.实验结果表明该定理具有较好的实用价值. Bayesian Network is a kind of probabilistic graphical model, which can express the conditional probability into graphical formula. Structural learning and parameter learning of Bayesian Networks are two main factors of it's application. The structural learning process maybe time consuming when the number of variables arise, and the results can be in different formulas , which are equivalence class actually. Theory of the equivalence of rudimentary structure is presented and proved, which shows that the Bayesian Networks of the same rudimentary structure are of the same description length to the database. And this theory can improve the efficiency of structure learning. Experimental results show that it is practical to the refinement of the ALARM network.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第10期1842-1845,共4页 Journal of Chinese Computer Systems
基金 安徽省自然科学基金项目(03042207)资助.
关键词 Rudimentary结构 最小描述长度 BAYESIAN网 结构学习 Rudimentary structure the minimum description length Bayesian networks, structure learning
  • 相关文献

参考文献13

  • 1Eugene Santos, Solomon Eyal Shimony. Deterministic appro-ximation of marginal probabilities in bayes netsEj]. IEEE Transactions on Systems, Man, and Cybernetics-Part At System and Humans, 1998,28(4) :377-393.
  • 2David Maxwell Chickering. Learning Bayesian networks is NP-complete[A]. In..D. Fisher and H.j. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V[M].Springer-Verlag, 1996,121-130.
  • 3刘大有 王飞 卢奕南.Bayesian网学习[A]..世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001..
  • 4Andrew Barron, jorma Rissanen, Bin Yu. The minimum description length principle in coding and modeling [J]. IEEE Transactions on Information Theory, 1998,44(6): 2743-2760.
  • 5Wai Lam. Learning and refinining Bayesian network structures from data[D]. Ontario: University of Waterloo, 1994.
  • 6Wai Lam. Bayesian network refinement via machine learning approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(3):240-251.
  • 7Verma T, Pearl J. Equivalence and synthesis of causal models[C]. In: P P Bonissone, Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Elsevier Science Publishing Company Inc., New York, NY 1991, 220-227.
  • 8彭青松,张佑生,汪荣贵,钱隆,骆祥峰.基于MDL原理与混合遗传算法的Bayesian网络结构学习[J].微电子学与计算机,2002,19(7):27-29. 被引量:5
  • 9Chickering D M. Learning equivalence classes of Bayesian network structures[C]. In: Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR, Morgan Kaufmann, 1996,150-157.
  • 10Friedman N, Getoor L, Koller D et al. Learning probabilistic relational models[C]. Inx Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm,Sweden, 1999.

二级参考文献3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部