期刊文献+

压滤机新型电液控制系统的建模与仿真研究 被引量:5

Modelling and Simulation of New Electro-Hydraulic System in Filter Press
下载PDF
导出
摘要 基于对控制系统的建模方法,提出了面向液压系统数学模型的“灰箱”建模法。在对压滤机的液压控制系统重新设计的基础上,利用“灰箱”建模理论建立了液压系统的数学模型,运用Matlab中的Simulink软件包对该系统进行了动态特性数字仿真。实测和运行验证了改造后的液压系统工作可靠性与稳定性得到提高,为改善压滤机液压控制系统性能奠定了良好的基础。 Based on modelling for control system, a “grey--box” modelling strategy of the mathematics modelling for hydraulic system is proposed. And based on the rebuilt hydraulic system, by using the “grey--box” modelling theory, the mathematical modelling of hydraulic system was set up. The hydraulic system was simulated by Simulink software package of Matlab, and the results from simulation testify that the reliability and stability can be improved by on-the-spot survey and running the rebuilt hydraulic system. All of these designs, measures and researches make it available for improving hydraulic system in filter press in the future.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2005年第19期1750-1753,共4页 China Mechanical Engineering
基金 河北省科学技术厅攻关项目(0254020D) 河北省教育厅科研计划攻关项目(2002125)
关键词 灰箱建模 压滤机 液压系统 拓扑结构 动态仿真 grey-box modelling filter press hydraulic system topology configuration dynamic simulation
  • 相关文献

参考文献5

二级参考文献8

共引文献15

同被引文献25

  • 1余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005,25(3):28-31. 被引量:281
  • 2黄人豪.二通插装阀及其基本功率回路的开关特性(续)[J].流体传动与控制,2006(2):35-37. 被引量:2
  • 3邓克,叶小华,王刚.二通插装阀启闭动态试验及特性分析[J].机械工程师,2006(7):71-72. 被引量:8
  • 4Ziaei K, Sepehri N. Modeling and identification of electrohydraulic servos. Mechatronics, 2000, 10:761-772.
  • 5He Q H, Zhang D Q, Hao P, et al. Modehng and control of hydraulic excavator' s ann. Journal of Central South University Technology, 2006, 13(4): 422-427.
  • 6Kemmetmuller W, Muller S, Kugi A. Mathmatical modeling and nonlinear controller design for a novel electrohydraulic power-steering system. IEEE Transaction on Mechatronics, 2007, 12(1): 85-97.
  • 7He S, Sepehri N. Modeling and prediction of hydraulic servo actuators with neural networks. In: Proceeding of American Control Conference, San Diego, USA, 1999. 3708-3712.
  • 8Rumelhart D E, Hinton G E, WilliamsR J. Learning representations by back propagating errors. Nature, 1986, 323 (9) :533-536.
  • 9Hagan M T, Menhaj M B. Training feedforward networks with the marquardt algorithm. IEEE Transaction on Neural Networks, 1994, 5(6): 989-993.
  • 10MacQueen J B. Some Methods for classification and Analysis of Multivariate Observations. In: Proceeding of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1967, 281-297.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部