期刊文献+

基于ISVM的软测量建模及其在PX生产中的应用研究 被引量:1

Soft Sensor Modeling Based on ISVM and Its Application in PX Fractionation
下载PDF
导出
摘要 针对软测量模型存在的失效问题,提出一种基于增量支持向量机的建模方法.随着时间的推移,每次在模型中增加一个样本进行增量学习的同时,采用启发式策略去掉工作集中一个老的样本,从而可以在软测量模型中不断增加能够代表新工况信息样本的同时控制工作样本集的规模.将所提出的软测量建模方法用于二甲苯(PX)吸附分离过程纯度的预测,结果表明所提出的建模方法以及样本替换策略可以有效地增强软测量模型适应工况变化的能力,提高其预测的精度. In order to overcome model failure problem, a soft sensor modeling method based on incremental support vector machines (ISVM) is presented. In ISVM, an incremental sample which represents new operational condition is introduced to the model, whereas an old sample is discarded from the model to control the size of working set. The proposed method is applied to predict the purity of para-xylene (PX) in a PX fractionation by adsorption process. Simulation results show that the proposed soft sensor model actually increases the adaptive abilities to various operation conditions and solves the model failure problem caused by change of operation conditions or load.
出处 《控制与决策》 EI CSCD 北大核心 2005年第10期1102-1106,共5页 Control and Decision
基金 国家杰出青年科学基金项目(NOYSFC 60025308) 浙江省"151"人才重点项目
关键词 支持向量机 增量学习 软测量 PX吸附分离过程 Support vector machines Incremental learning Soft sensor Para-xylene fractionation by adsorption process
  • 相关文献

参考文献9

  • 1Pavone D, Hotier G. System Approach Modeling Applied to the Eluxyl Process[J]. Oil & Gas Science and Technology-rev, 2000,55 (4) : 437-446.
  • 2徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,34(2):1-3. 被引量:50
  • 3Vapnik V. Statistical Learning Theory [M]. New York: Wiley Springer, 1998:146-175.
  • 4王宇红,黄德先,高东杰,金以慧.基于LS-SVM的非线性预测控制技术[J].控制与决策,2004,19(4):383-387. 被引量:70
  • 5Naqa I E, Yang Y. Relevance Feedback Based on Incremental Learning for Mammogram Retrieval [J].Image Processing, 2003,4 (2) : 7-11.
  • 6Cauwenberghs G, Poggio T. Incremental and Decremental Support Vector Machine Learning[J].Advances in Neural Information Processing Systems,2000,13(2) : 147-158.
  • 7Burges C J C. A tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Discovery, 1998,2 (2): 1-47.
  • 8Chang C C, Lin C J. Training Nu-support Vector Regression: Theory and Algorithms [J]. Neura Computation, 2002,14 (2) : 1959-1977.
  • 9Tax D M J, Duin R P W. Data Domain Description by Support Vectors[A ]. Proc of 8th European Symposium on Artificial Neural Networks [C].Brussels : Facto D, 1999 : 251-256.

二级参考文献5

共引文献117

同被引文献11

  • 1桂卫华,李勇刚,阳春华,陈志盛.基于改进聚类算法的分布式SVM及其应用[J].控制与决策,2004,19(8):852-856. 被引量:13
  • 2汪辉,皮道映,孙优贤.支持向量机在线训练算法及其应用[J].浙江大学学报(工学版),2004,38(12):1642-1645. 被引量:17
  • 3Boyanov B S, Konareva V V, Kolev N K. Purification of zinc sulfate solutions from cobalt and nickel through activated cementation[J]. Hydrometallurgy, 2004, 73 (2) : 163-168.
  • 4Wu C H, Ho J M, Lee D T. Travel-time prediction with support vector regression [J]. IEEE Trans on Intelligent Transportation Systems, 2004, 5 (4):276- 281.
  • 5Davy M, Desobry F, Gretton A, et al. An online support vector machine for abnormal events detection [J]. Signal Processing, 2006, 86(8): 2009-2025.
  • 6Lau K W, Wu Q H. Online training of support vector classifier[J]. Pattern Recognition, 2003, 36(8) : 1913- 1920.
  • 7Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning [ J ]. Machine Learning, 2001, 44(13):409-415.
  • 8Ma J, Theiler J, Perkins S. Accurate online support vector regression[J]. Neural Computation, 2003, 15 (11) : 2683-2704.
  • 9Omitaomu O A, Jeong M K, Badiru A B, et al. Online support vector regression approach for the monitoring of motor shaft misalignment and feedwater flow rate [J]. IEEE Trans on Systems, Man and Cybernetics- Part C: Applications and Reviews, 2007, 37(5): 962-970.
  • 10刁翔,李奇.基于加权支持向量回归的在线训练算法及应用[J].系统仿真学报,2007,19(17):3970-3973. 被引量:5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部