摘要
讨论在一维情形下初值具有脉冲形式的常系数半线性偏微分方程的Cauchy问题。利用渐近分析的方法,求出反映两脉冲波干扰的近似解的表达式,通过近似解与精确解的误差分析(扰动方法),得出近似解是精确解的一个好的近似。
In one dimension case, a Cauchy problem with pulse like initial data for a semilinear strict hyperholic equations with constant coefficients is discussed. With the aid of asymptotic analysis method, the approximate solution to reflect the interaction of two pulse waves is derived. By analysing the error between the exact solution and the approximate solution, the conclusion obtained is that the approximate solution is a good approximation of the exact solution.
出处
《西安理工大学学报》
CAS
2005年第3期261-267,共7页
Journal of Xi'an University of Technology
基金
国家自然科学基金资助项目(10131050)
教育部及上海科学技术委员会资助项目(03QMH1407)
关键词
近似解
精确解
脉冲
干扰
非线性
approximate solution
exact solution
pulses
interaction
nonlinear