期刊文献+

一维非线性脉冲波的两波干扰 被引量:2

Two-Wave Interference for One-Dimensional Nonlinear Pulse Waves
下载PDF
导出
摘要 讨论在一维情形下初值具有脉冲形式的常系数半线性偏微分方程的Cauchy问题。利用渐近分析的方法,求出反映两脉冲波干扰的近似解的表达式,通过近似解与精确解的误差分析(扰动方法),得出近似解是精确解的一个好的近似。 In one dimension case, a Cauchy problem with pulse like initial data for a semilinear strict hyperholic equations with constant coefficients is discussed. With the aid of asymptotic analysis method, the approximate solution to reflect the interaction of two pulse waves is derived. By analysing the error between the exact solution and the approximate solution, the conclusion obtained is that the approximate solution is a good approximation of the exact solution.
作者 袁明生
出处 《西安理工大学学报》 CAS 2005年第3期261-267,共7页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(10131050) 教育部及上海科学技术委员会资助项目(03QMH1407)
关键词 近似解 精确解 脉冲 干扰 非线性 approximate solution exact solution pulses interaction nonlinear
  • 相关文献

参考文献7

  • 1Majda A, Rosales R. Resonatly interacting weakly nonlinear hyperbolic wave Ⅰ: a single space varable[J]. Stud Appl Math, 1984,71: 149~179.
  • 2Majda A, Rosales R. Resonantly interacting weakly nonlinear hyperbolic waves Ⅱ: several space variables[J]. Stud Appl Math, 1986,75:187~226.
  • 3He Y P, Moodie T B. Two-wave interactions for weakly nonlinear hyperbolic waves[J]. Stud Appl Math, 1993,88:241~267.
  • 4Carles R, Rauch J. Focusing of spherical nonlinear pulses in R1+a (electronic)[J]. Proc Amer Math Soc, 2002,130:791~804.
  • 5Carles R, Rauch J. Focusing of spherical nonlinear pulses in R1+3, Ⅱ. Nonlinear caustic[J]. Rev Mat Iberoamericana,2004,20 : 815 ~ 864.
  • 6Carles R, Rauch J. Focusing of spherical nonlinear pulses in R1+3, Ⅲ. Sub and Supercritical eases[J]. Tohoku Math J,2004,56(2): 393~410.
  • 7Alterman D, Rauch J. Diffractive nonlinear geometric optics for short pulses[J]. SIAM J Math Anal, 2003,4:1 477~1 502.

同被引文献30

  • 1Ming-sheng Yuan.Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations[J].Acta Mathematicae Applicatae Sinica,2005,21(3):415-428. 被引量:2
  • 2Majda A, Rosales R. Resonatly interacting weakly nonlinear hyperbolic wave Ⅰ: a single space varable[J]. Stud Appl Math, 1984, 71: 149-179.
  • 3Majda A. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves Ⅱ: several space variables[J]. Stud Appl Math, 1986, 75: 187-226.
  • 4Caries R, Raueh J. Focusing of spherical nonlinear pulses in[C]//Proc Amer Math Soc, 2002, 130(3): 791-804.
  • 5Caries R, Raueh J. Focusing of spherical nonlinear pulses in, Ⅱ[J]. Nonlinear caustic, Rev Mat Iberoamericana, 2004, 20: 815-864.
  • 6Caries R, Rauch J. Focusing of spherical nonlinear pulses in, Ⅲ[J]. Sub and Supercritieal cases, Tohoku Math J, 2004, 56(2): 393-410.
  • 7Alterman D, Rauch J. Diffractive nonlinear geometric optics for short pulses[J]. SIAM J Math Anal, 2003, 34: 1477-1502.
  • 8Alterman D, Raueh J. Nonlinear geometric optics for short pulses[J]. J Diff Eq, 2002, 178(2) : 437-465.
  • 9Yuan M-S. Interaction of short pulses in a hyperbolic system[C]//Proc R Soe Edinb A, 2008, 138: 1163-1178.
  • 10Lax P D.Asymptotic solutions of oscillatory initial value problem[J].Duke Math Journal,1957,24:627-645.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部