期刊文献+

基于ENO格式的一维溃坝水流数值模拟 被引量:5

One-Dimensional Dam-Break Water Flow Numerical Simulation Based on ENO Schemes
下载PDF
导出
摘要 将ENO格式和Runge-Kutta时间离散的思想应用于一维Saint-Venant方程组的求解,数值模拟溃坝洪水,得出了水位和流速的沿程分布。经与理论解比较可知,数值解在间断波附近没有出现数值振荡,水位和流速大小与理论解均吻合较好,表明采用ENO格式所建立的高分辨率模型能够很好地模拟溃坝波的演进过程。 In this paper, the ENO scheme and the Runge-Kutta time discertization method are applied to the one-dimensional Saint-Venant water equations for numerical simulation of dambreak flood water; and water depth and velocity along the distance distribution are obtained. It can be known via the theoretical comparison that the numerical resolutions have no numerical oscillatory at the discontinuity, and water depth and velocity computed are found to be in agreement with the analytical solutions. Thus indicating that the model with high resolutions established using ENO scheme is able to simulate the evaluation process of the dam-break waves.
出处 《西安理工大学学报》 CAS 2005年第3期293-295,共3页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(S9579013)
关键词 ENO格式 溃坝洪水 数值模拟 ENO schemes dam-break flows numerical simulation
  • 相关文献

参考文献7

  • 1Garcia R, Kahawita R A. Numerical solution of the St. Venant equations with MacComack finite-difference scheme[J].Int J Numer Methods in Fluids, 1986,6: 259~ 274.
  • 2Fennema R J, Chaudhry M H. Implicit methods for two-dimensional unsteady ree-surface flows[J]. J Hydr Res, 1989,27(3) :321~332.
  • 3Savic L J, Holly F M, Jr. Dambreak flood waves computed by modified Gonunov method[J]. J Hydr Res, 1993,31(2) : 187~204.
  • 4Harten A. High resolution schemes for hyperbolic conservation laws[J]. J Comp Phys, 1983,49(2) :357~393.
  • 5Senka Vuknovic, Luka Sopta. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations[J]. J Comp Phys, 2002,179(2) :593~621.
  • 6Shu C W, Osher S. Effient implementation of essentially nonoscillatory shock capturing schemes[J]. J Comp Phys,1988,77(2) :439~471.
  • 7Roe P L. Approximate riemann solvers, parameter vectors and difference schemes[J]. J Comp Phys, 1981,43(2):357.

同被引文献145

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部