期刊文献+

基于比特平面SBI变换的遥感图像无损压缩

Lossless Remote Sensing Image Compression Based on Subblock Interchange in Bit Plane
下载PDF
导出
摘要 提出一种基于子块互换(subb lock in terchange,SB I)的遥感图像无损压缩方案.采用小波变换对遥感图像进行分解,将生成的频域数据按不同比特平面分别进行SB I变换并用算术编码进行压缩.该方案改进了基于列的扫描方式,将小波系数按幅值大小进行重新排序,根据SB I变换后数据特点取消了文本压缩中常用的前移编码(M TF),在降低复杂度的前提下提高了压缩率,同时具有信噪比和分辨率可扩展特性. A lossless remote sensing image compression method based on subblock interchange (SBI) was presented. Remote sensing image was decompressed into frequency domain image by wavelet transform and the bit planes in frequency domain image were permuted by SBI transform seperately. The resulting data was compressed by arithmetic encoder. In the method, the column-based scan mode was improved, wavelet coefficients were resorted in magnitude order, MTF (move to front) code, which was often used in text compression method, was cancelled. The method achieves better compression performance and lower complexity. At the same time the method achieves desired feature of PSNR scalability and resolution scalability.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第9期765-768,共4页 Transactions of Beijing Institute of Technology
基金 国家"八六三"计划项目(413220205)
关键词 遥感图像 比特平面编码 BWT算法 SBI变换 排序顺序 remote sensing image bit plane encoding Burrows-Wheeler transformation subblock interchange sorting order
  • 相关文献

参考文献9

  • 1Memon N, Wu Xiaolin. Recent developments in context-based predictive techniques for lossless image compression[J]. The Computer Journal,1997,40(2):127-136.
  • 2Wu Xiaolin, Memon N. Context-based adaptive lossless image coding[J]. IEEE Transaction on Communications,1997,45(4):437-444.
  • 3ISO/IEC JTC 1/SC 29/WG1 N 2412. The JPEG-2000 still image compression standard[S].
  • 4Burrows M, Wheeler D. A block-sorting lossless data compression algorithm[EB/OL]. http://gatekeeper.dec.com/pub/dec/src/research-reports/abstracts/src-rr-124. html, 2004-03-09/2004-08-03.
  • 5Ng K S, Cheng L M. Image compression system using data re-ordering technique[J]. Electronics Letters, 2003,39(14):1046-1047.
  • 6Balkenhol B, Kurtz S. Universal data compression based on the Burrows-Wheeler transformation: Theory and practice[J]. IEEE Transactions on Computer, 2000,49(10):1043-1053.
  • 7Effros M, Visweswariah K. Universal lossless source coding with the Burrows-Wheeler transform[J]. IEEE Transactions on Information Theory, 2002,48(5): 1061-1081.
  • 8Guo Haitao, Burrus C S, Waveform and image compression using the Burrows-Wheeler transform and the wavelet transform[A]. 1997 International Conference on Image Processing(ICIP'97)[C]. Washington, DC: IEEE Computer Society,1997(3-1).26-29.
  • 9Chapin B, Tate S R. Higher compression from the Burrows-Wheeler transform by modified sorting[EB/OL]. http://www.cs.unt.edu/~srt/papers/bwtsort.pdf, 2004-05-02/2004-07-02.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部