期刊文献+

电视图像目标实时分割与识别算法 被引量:5

Real-Time Image Segmentation and Recognition Algorithm for TV Seeker
下载PDF
导出
摘要 研究一种电视图像目标实时分割和识别算法.在二维图像不变矩和相对矩的基础上,进一步组合优化得出4个不变矩,结合复数矩、圆方差和椭圆方差组成目标特征向量,利用k-近邻法实现目标的识别和分类.图像分割采用改进矩不变阈值分割和基于梯度的自适应阈值分割提取目标.仿真实验表明,提取的目标特征量对于平移、缩放和旋转均能保持较好的不变性.用该分割算法分割的图像边缘清晰,分割时间为8 m s,易于硬件实现. The real-time image segmentation and recognition algorithm for a TV seeker is developed. Based on Hu's invariant moments and relative moments, a novel pattern recognition method is presented, which can classify the targets by using the four invariant moments after further optimized and combine, together with the complex moment, circularity variance and ellipse variance to construct the eigenvector of the image, the improved moment-preserving thresholding method and the adaptive gradient thresholding method are used to pick-up targets. The results of experiments show that the target eigenvectors have the property of translation, rotation and scaling invariance. The segmentation algorithm can segment the images automatically, completely and rapidly its hardware is easy.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第9期786-790,共5页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(51405030104BQ0171)
关键词 图像分割 特征提取 目标识别 组合不变矩 image segmentation feature extraction target recognition combined invariantmoment
  • 相关文献

参考文献10

  • 1Hu M. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory,1962,8:179-187.
  • 2Chen C C. Improved moment invariants for shape discrimination[J]. Pattern Recognition,1993,26(5):683-686.
  • 3王波涛,孙景鳌,蔡安妮.相对矩及在几何形状识别中的应用[J].中国图象图形学报(A辑),2001,6(3):296-300. 被引量:33
  • 4Tsai W H. Moment-preserving thresholding:A new approach[J]. Computer Vision,Graphics, Image Process,1985,29:377-393.
  • 5Cheng S C. Tsai W H. A neural network implementation of the moment-preserving technique and its application to thresholding[J]. IEEE Transactions on Computers,1993,42(4):501-507.
  • 6Sun Y N,Liu W J,Wang Y C. United moment invariants for shape discrimination[A]. Proceeding of the 2003 IEEE International Conference on Robotics,Intelligent Systems and Signal Processing[C]. Changsha: [s.n.], 2003. 88-93.
  • 7杨世周,罗庆姚.目标电视图像识别技术研究[J].电视技术,1999(2):79-82. 被引量:7
  • 8Francisco J, Sanchez M. Automatic recognition of biological shapes using the Hotelling transform[J]. Computers in Biology and Medicine,2001,31(2):85-99.
  • 9Ng B W,Bouzerdoum A. Supervised texture segmentation using DWT and a modified K-NN classifier[A]. Proceeding of the 15th IEEE International Conference on Pattern Recognition[C]. Barcelona, Spain:[s.n.], 2000. 676-679.
  • 10Marquesde Sa J P. Pattern recognition concepts,methods and application[M]. Beijing:Tsinghua University Press,2002. (in Chinese).

二级参考文献1

  • 1冈萨雷斯.数字图像处理[M].北京:科学出版社,1984..

共引文献38

同被引文献25

  • 1魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 2朱树先,张仁杰.BP和RBF神经网络在人脸识别中的比较[J].仪器仪表学报,2007,28(2):375-379. 被引量:30
  • 3[美]Rafael C G,Richard E W.数字图像处理(英文版)Digital Image Processing (Second Edition)[M].北京:电子工业出版社,2002.
  • 4LOWE D G. Distinctive image features from scale-invariant keypoints[ J]. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 5KOENDERINK J J. The structure of images [ J ]. Biological Cybernetics, 1984 (50) : 363-396.
  • 6LINDEBERG T. Scale-space theory:A basic tool for analyzing structures at different scales [ J ]. Journal of Applied Statistics, 1994, 21 (2) :224-270.
  • 7LINDEBERG T. Scale-space theory in computer vision [ M ]. London : Kluwer Academic Publishers, 1994.
  • 8YOUNG I T, Van VLIETL J. Recursive implementation of the Gaussian Filter [ J ]. Signal Processing, 1995 , 44 (2) :139-151.
  • 9LOWE D G. Object recognition from local scale-invariant features[C]//International Conference on Computer Vision. Corfu, Greece: IEEE Computer Society, 1999:1150-115"7.
  • 10向卫东.电视摄像技术[M].西南师范大学出版社,2008.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部