期刊文献+

一种混合交叉策略的多目标演化算法及其性能分析 被引量:3

Multi-objective Evolutionary Algorithm Based on Double Crossover and Its Performances Analysis
下载PDF
导出
摘要 演化算法(EA)是求解多目标优化问题(MOP)重要而有效的方法,而应用演化策略、技巧是改善解性能的重要途径。作者叙述了多目标优化问题的有关概念,结合已有算法中的方法,设计了基于两种交叉操作相互结合的多目标演化算法(MOEADC),并且分析相关性能。该算法不仅具有较高的计算效率,而且具有较好的收敛性能,并且运用了有关方法维护了解集的分布性能。算例结果表明该算法的良好性能。 Evolutionary algorithm is a main and effective method solving a multi-objective optimization problem (MOP). It is a significant approach, in which solutions' performance of MOP is improved, by using all kinds of evolutionary strategies and techniques. Some concepts about a multi-objective optimization problem were described, and with some operators in several noted algorithms, a multi-objective evolutionary algorithm based on double crossover was designed, and relevant performances were analyzed. The proposed algorithm is not only computationally efficient, but also has good convergence performance, and some method is also applied to maintain solutions' diversity. The experiment shows it performs well.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第10期2383-2387,共5页 Journal of System Simulation
基金 国家自然科学资金(60175018) 安徽省青年教师资助项目(2004jq108) 安徽大学人才队伍建设经费资助
关键词 演化算法 多目标演化算法 性能分析 演化策略 evolutionary algorithm multi-objective evolutionary algorithm performance analyses evolutionary strategy
  • 相关文献

参考文献12

  • 1汪祖柱 程家兴 方宏彬.基于Pareto排序算法的多目标演化算法的策略分析[R]..第14届中国神经网络学术会议[C].,2004..
  • 2K Deb, Amarendra Kumar. Real-coded genetic algorithm with simulated binary crossover: studies on multimodal and multi-objective problems [J]. Complex Systems, 1995.9.
  • 3朱学军,陈彤,薛量,李峻.多个体参与交叉的Pareto多目标遗传算法[J].电子学报,2001,29(1):106-109. 被引量:43
  • 4KDeb,AmritPratap,SameerAgarwal,TMeyarivan.A Fast and Elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation.2002,6(2).
  • 5Kalyanmoy Deb,Mayank Goyal.A combined genetic adaptive search for engineering design[J].Computer Science and Informatics,1996,26(4).
  • 6D A Van Veldhuizen.G B Lamont.Evolutionary computation and convcrgence to a Pareto front[C].Late Breaking Papers at the Genetic Programming 1998 Conf.California,1998.
  • 7Back Thomas.Evolutionary Algorithms in Theory and Practice[M].New York:Oxford University Press,1 996.
  • 8Laumanns,M,L.Thiele,K Deb.Combining convergence and diversity in evolutionary multi-objective algorithm[Z].
  • 9K Deb,chin Jain.unning performance metrics for evolutionary multi-objective optimization[R].Technical Report 2002004,KanGAL,Indian Istitute of Technology,Kanpur 208016,India,2002.
  • 10K Deb L.Thiele,etc.Scalable test problems for evolutionary multi-objective optimization[R].Technical Report 112,Computer Engeering and Networks Laboratory,Swiss Federal Institute of Technology,Zurich,Switzer-land,2001.

二级参考文献4

共引文献42

同被引文献30

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部