期刊文献+

基于像素可信度和空间位置的运动目标跟踪 被引量:13

Moving Object Tracking Based on Location and Confidence of Pixels
下载PDF
导出
摘要 运动目标跟踪是视频信息处理的重要研究课题之一·首先将时间域上的中值背景建模与空间域上最小交叉熵法相结合,用于检测运动目标所在跟踪区域·在此基础上,提出了跟踪区域内基于像素的可信度与空间位置的权重函数,利用HSV色彩分布模型计算出目标模型与预测模型间的相似性,选出最优相似模型作为当前目标模型,从而实现了多目标的跟踪·实验显示,该算法计算简单,对相似目标能实现准确的跟踪,对非刚性目标的尺度变化、多目标的交叉及部分遮挡具有鲁棒性· Moving object tracking is a critical issue of image sequence processing. In this paper, a moving object tracking algorithm based on location and confidence of pixels is proposed. Firstly, the moving objects are detected by combining the median background model in temporal domain with the minimum crossentropy in spatial domain. Then the rectangle area of the objects are obtained, and at the same time an HSV color distribution model is used to measure the similarity between target rectangles and hypothetical rectangles. In this process, a weighting function based on location and confidence of pixels is presented to weigh the pixel values in the rectangle area of the tracking. The experimental results show that the algorithm is computationally efficient and robust to scale invariant, partial occlusion and interactions of nonrigid objects, especially similar objects.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第10期1726-1732,共7页 Journal of Computer Research and Development
基金 国家创新研究群体基金项目(60024301) 国家自然科学基金项目(60175008)
关键词 跟踪 交叉熵 部分遮挡 颜色分布 BHATTACHARYYA系数 tracking cross-entropy partial occlusion color distribution Bhattacharyya coefficient
  • 相关文献

参考文献14

  • 1D.P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge.Comparing images using the Hausdorff distance. IEEE Trans.Pattern Analysis Machine Intellelligence, 1993, 15(9): 850~863.
  • 2D.P. Huttenlocker, J. J. Noh, W. J. Rucklidge. Tracking nonrigid objects in complex scenes. The 4th Int'l Conf. Computer Vision, Berlin, Germany, 1993.
  • 3I. Haritaoglu, D. Harwood, et al. W4: Real-time surveillance of people and their activities. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(8): 809~830.
  • 4C. Stauffer, W. E. L. Grimson. Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(8): 747~757.
  • 5Katja Nummiaro, Esther Koller-Meier, Luc Van Gool. An adaptive color-based particle filter. Image and Vision Computing,2003, 21(1): 99~110.
  • 6Y. Raja, S. McKenna, S. Gong. Tracking and segmenting people in varying lighting conditions using colour. In: Int'l Conf.Face and Gesture Recognition. Nara, Japan: IEEE Computer Society Press, 1998. 228~233.
  • 7S.J. McKenna, Y. Raja, S. G. Gong. Tracking colour objects using adaptive mixture models. Image and Vision Computing,1999, 17(2): 225~231.
  • 8A. Jepson, D. Fleet, T. El-Maraghi. Robust online appearance models for visual tracking. IEEE Conf. Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society Press, 2001. 415~422.
  • 9D. Comaniciu, V. Wamesh, P. Meer. Real-time tracking of nonrigid objects using mean shift. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition. South Carolina: IEEE Computer Society Press, 2000. 142~ 149.
  • 10E. Stringa, C. S. Regazzoni. Real-time video-shot detection for scene surveillance applications. IEEE Trans. Image Processing,2000, 9(1) :69~79.

同被引文献125

引证文献13

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部