期刊文献+

信号在过完备库上分解中原子形成的快速算法 被引量:7

Fast Atom Construction Algorithm for Signal Decomposition in Over-Complete Dictionary
下载PDF
导出
摘要 针对信号在过完备库上分解中原子生成速度慢的难题,提出了一种原子生成的快速算法.首先根据原子的尺度把原子分成小原子和大原子2类.对于小原子,因为其能量集中在较小的范围,所以用小范围生成的局部原子代替整个原子.对于大原子,先生成相应的较小原子,然后通过插值方法生成大原子.实验结果表明,当信号长度为256时,本算法在重建信号的质量没有任何改变的条件下,原子生成的速度比传统算法提高了4. 7倍. It is one of the main problems in signal decomposition in over-complete dictionary that the atom construction process is very slow. To solve this problem, a new fast algorithm was proposed. In the algorithm, all atoms are divided into two categories: small and large atoms, according to their scales. Because the energy of a small atom concentrates in a small region of the whole atom, it is constructed within the region of energy concentration, and the whole atom is represented by the locally constructed atom. A large atom is constructed by interpolation after a corresponding small atom has been constructed. Experimental results show that, when the length of the signal is 256, the proposed algorithm is 4.7 times faster than traditional methods with the same signal quality.
出处 《西南交通大学学报》 EI CSCD 北大核心 2005年第3期402-405,共4页 Journal of Southwest Jiaotong University
基金 国家留学基金资助项目(21851039) 四川省应用基础研究项目 (03JY029 048 2 04JY029 059 2) 教育部留学回国人员科研启动基金资助项目(教外司[2004]527号)
关键词 信号处理 稀疏分解 过完备原子库 快速算法 signal processing sparse decomposition over-complete dictionary of atoms fast algorithm
  • 相关文献

参考文献6

二级参考文献20

  • 1殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 2Bergeau F,Mallat S.Matching pursuit of images[A].Proceedings of IEEE-SP[C].USA:Piladelphia,1994.330-333.
  • 3Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans.On Signal Processing,1993,41(12):3397-3415.
  • 4Neff R,Zakhor A.Very low bit-rate video coding based on matching pursuit[J].IEEE Trans.Circuits and Systems for Video Tech.,1997,7(1):158-171.
  • 5Phillips P.Matching pursuit filter design[A].Proceedings of the 12th IAPR international conference on SP (Vol.3)[C].Jerusalem Israel,1994.57-61.
  • 6Vandergheynst P,Frossard P.Efficient image representation by anistropic refinement in matching pursuit[A].Proceedings of IEEE on ICASSP(Vol.3)[C].USA:Salt Lake City,2001.1757-1760.
  • 7Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12) : 3 397-3 415.
  • 8Arthur P L, Philipos C L. Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[A]. Proc of IEEE ICASSP[C]. Hong Kong: IEEE Press: 2003,I(4). 820-828.
  • 9B A Olshausen,D J Field.Sparse coding with an overcomplete basis set:a strategy employed by V1[J]? Vision Research,1997,37:3311-3325.
  • 10M Lewicki,T Sejnowksi.Learning overcomplete representations[J].Neural.Computation,2000,12:337-365.

共引文献181

同被引文献61

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部