期刊文献+

任意变厚度的旋转扁薄壳非线性稳定的幂函数解法 被引量:3

Power function solution of nonlinear stability of thin revolutionary shell with arbitrarily variable thickness
下载PDF
导出
摘要 以幂函数为试函数,两次使用配点法成功地分离了耦合的大挠度方程,从而导出变厚度旋转扁壳非线性稳定的计算式。支座可以是弹性的。本文给出了均布或多项式分布荷载作用下,线性或多项式型变厚度的圆锥壳、球壳、余弦壳或四次多项式型旋转壳的上、下临界荷载。均布荷载作用下指数型变厚度球壳的上临界荷载同其他方法的结果作了比较。用配点法编写的程序具有收敛范围大、精度高、通用性强和计算时间少的优点。 By taking power functions as trial functions, the coupled equations of large deflection have successfully been separated twice applying the method of point collocation. The formulas of nonlinear stability of a thin revolutionary shell with arbitrarily variable thickness have been obtained. The support can be elastic. Under action of uniformly or polynomial distributed load, upper and lower critical loads of shells with linearly or polynomial variable thickness have been calculated including conical shells, spherical shells, quartic polynomial shell and cosine shells. Under action of uniformly distributed load, the upper critical loads of spherical shells with exponentially variable thickness have been compared with those obtained by other methods. Excellences of the program written by the method of point collocation are wide convergence region, high precision, universal application and little amount of computing time.
机构地区 天津大学土木系
出处 《计算力学学报》 EI CAS CSCD 北大核心 2005年第5期633-638,共6页 Chinese Journal of Computational Mechanics
关键词 任意变厚度 旋转扁薄壳 非线性稳定 配点法 arbitrarily variable thickness revolutionary shell nonlinear stability method of point collocation
  • 相关文献

参考文献17

  • 1侯朝胜.用矩法计算受轴对称分布荷载的扁圆锥薄壳的非线性稳定[J].工程力学,1987,4(1):1-10.
  • 2叶开沅 宋卫平.圆锥扁壳在均布压力下的非线性稳定问题[J].兰州大学学报,1983,19:134-145.
  • 3侯朝胜.用配点法计算受轴对称分布荷载的球面扁薄圆壳的非线性稳定[J].上海力学,1989,10(1):43-50.
  • 4KAPLAN A. Buckling of Spherical Shells, Thin-Shell Structure Theory, Experiment and Design[M]. Edited by Fung YC and Shechler EE, Prentice-Hall, Inc. Englewood Cliffs N. J, 1974.
  • 5顾淑贤.扁球壳轴对称屈曲问题的样条函数法[J].力学学报,1987,19(2):179-185.
  • 6VARPASUO P. Incremental analysis of axisymme-tric shallow shells with varying strain-displacement equations[J]. Comp Meths Appl Mech Eng,1980,21:153-169.
  • 7WEINITSCHKE H. On the stability problem for shallow spherical shells[J]. J Math Phys,1960,38:209-231.
  • 8ARCHER R R. On the numerical solution of nonli-near equations of revolution[J]. J Math Phys,1962,40:165-178.
  • 9BUDIANSKY B. Buckling of clamped shallow sphe-rical shell[A]. Proceeding of the Symposium on the Theory of Thin Elastic Shells[C]. Delft, North-Holland, Amsterdam, 1959:64-69.
  • 10BANERJEE B. Large deflections of circular plates of variable thickness[J]. ASME J of Appl Mech,1982,49:243-245. Int J of Solids & Structure, 1983,19(2):179-182.

二级参考文献7

  • 1侯朝胜.受轴对称分布荷载的厚度按指数函数变化的圆薄板的大挠度[J]计算结构力学及其应用,1989(01).
  • 2候朝胜.用配点法计算受轴对称分布荷载的球面扁薄圆壳的非线性稳定[J]上海力学,1989(01).
  • 3侯朝胜.用矩法计算受轴对称分布荷载的扁圆锥薄壳的非线性稳定[J]工程力学,1987(01).
  • 4叶志明.变厚度圆底扁薄球壳的非线性稳定问题[J]力学学报,1984(06).
  • 5钱伟长.关于非线性力学[J]力学进展,1983(02).
  • 6陈山林.圆板大挠度的钱伟长解及其渐近特性[J]应用数学和力学,1982(04).
  • 7侯朝胜.受预张力或均布边缘径向荷载的圆薄板的大挠度问题[J].计算结构力学及其应用,1989,6(4):101-106. 被引量:1

共引文献2

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部