期刊文献+

嵌入式系统节能调度的空闲时间利用策略

Slack Utilization Strategy in Energy Saving Task Scheduling for Embedded Systems
下载PDF
导出
摘要 针对现有算法不能在保证调度有效的前提下实现满意节能效果的问题,分析了空闲时间与动态电压升降的关系,提出了统筹可用空闲时间的策略和逆向的电流-空闲时间优先(CSFB)的节能调度算法,并进行了仿真与对比.结果表明,统筹策略普遍适用于嵌入式系统的节能调度;对于典型高功耗任务集,CSFB算法的电量保有率和空闲时间利用率相比同类有效算法分别提高了12.29%和37.03%,能有效延长嵌入式系统的工作时间,实现更佳节能效果. While utilizing slack to scale down system voltage/speed and therefore save energy has been widely accepted, its strategy has not been systematically discussed yet. In this paper, we compared and analyzed various previous approaches, proposed OPS (overall planning), the slack utilization strategy and CSFB (current-slack first-backwards) algorithm, and analyzed their performance through simulation. Resuits indicate that our strategy is capable to schedule task sets of all loads efficiently, and our algorithm achieves 37.03% higher slack utilization ratio and 12.29% higher remaining charge ratio on average than other successful algorithms in scheduling typical heavy-loaded tasks.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第5期633-637,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家863计划资助项目(2002AA1Z1490) 国家教育部博士点基金资助项目(20040486049)
关键词 嵌入式系统 低功耗设计 动态电压升降 调度算法 空闲时间利用策略 embedded system low power design dynamic voltage scaling scheduling algorithm slack utilization strategy
  • 相关文献

参考文献12

  • 1Hong I, Kirovski D, Qu G,et al. Power Optimization of Variable-Voltage Core-Based Systems[J]. IEEE Transactions on Computer-Aided Design,1999,18(12):1702-1714.
  • 2Chang J, Pedram M. Energy Minimization Using Multiple Supply Voltages[J]. IEEE Transactions on very Large Scale Integration Systems, 1997,5(4):436-443.
  • 3Pedram M, Wu Q. Design Considerations for Battery-Powered Electronics[J]. IEEE Transactions on very Large Scale Integration Systems,2002,10(5):601-607.
  • 4Ioannides M G, Papadopoulos P J. Speed and Power Factor Controller for AC Adjustable Speed Drives[J]. IEEE Transactions on Energy Conversion,1991,6(3):469-475.
  • 5Manzak A, Chakrabarti C. Variable Voltage Task Scheduling Algorithms for Minimizing Energy/Power[J]. IEEE Transactions on very Large Scale Integration (VLSI) Systems,2003,11(2):270-276.
  • 6Mossé D,Aydin H,Childers B,et al. Compiler-Assisted Dynamic Power-Aware Scheduling for Real-Time Applications [EB/OL]. http://www.cs.pitt.edu/PARTS/papers/COLP00_mosse.pdf,Oct 2000.
  • 7Chowdhury P, Chakrabarti C. Battery Aware Task Scheduling for a System-on-a-Chip Using Voltage/Clock Scaling[A]. Proceedings of the IEEE Workshop on Signal Processing Systems, 2002[C]. Washington DC: IEEE Computer Society Press, 2002.201-206.
  • 8Rakhmatov D, Vrudhula S, Wallach D A. A Model for Battery Lifetime Analysis for Organizing Applications on a Pocket Computer[J]. IEEE Transactions on Very Large Scale Integration Systems,2003,11(6):1019-1030.
  • 9Chowdhury P, Chakrabarti C. Static Task-Scheduling Algorithms for Battery-Powered DVS Systems[J]. IEEE Transactions on very Large Scale Integration Systems,2005,13(2):226-237.
  • 10Yao F, Demers A, Shenker S. A Scheduling Model for Reduced CPU Energy [A]. Proceedings of the 36th Annual Symposium on Foundations of Computer Science[C]. Washington DC: IEEE Computer Society, 1995. 374-382.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部