期刊文献+

上行气固两相流充分发展段颗粒浓度关联及预测 被引量:5

Correlation and Prediction of Solids Holdups of Gas-Solid Two-Phase Flow in Fully Developed Region of CFB Risers
下载PDF
导出
摘要 在高度分别为15.1m和10.5m的两套实验装置上,对快速流态化到稀相气力输送流型下提升管内的轴向压力梯度进行了系统测试,以研究提升管充分发展段内不同颗粒的浓度变化及其与操作参数的关系.实验在其中175组操作条件下展现出明显的充分发展段(> 2.8 m).结果表明,表观气速在3~8 m·s-1之间变化时,对充分发展段颗粒浓度随终端颗粒浓度的变化关系影响显著,但当表观气速>8 m·s-1或< 3 m·s-1时,其对充分发展段颗粒浓度随终端颗粒浓度线性增加的关系影响极弱;在此基础上提出的预测关联式更明确地反映了操作条件等因素对充分发展段颗粒浓度的定量影响关系,其计算结果与本实验和相关文献的实验数据吻合良好. To investigate the solids holdups in fully developed region of CFB risers, experiments were carried out in two CFB risers with the heights of 15.1m and 10.5m, respectively. FCC particles (Geldart A) and sand particles (Geldart B) were used in the experiments and the solids holdups were calculated by using measured pressure gradients. The experimental results obtained from 175 sets of operation conditions, under which the lengths of fully developed section are longer than 2.8 m, show that when the superficial gas velocity is between 3 m·s^-1 and 8 m·s^-1, it has a significant effect on the variations of the average solids holdups in fully developed region with the terminal solids holdups, but when it is less than 3 m·s^-1 or greater than 8 m·s^-1, the effect becomes inapprecible and the average solids holdups vary linearly with the terminal solids holdups. By taking into account the effects of superficial gas velocity, particle properties and riser geometry, a new empirical correlation for the average solids holdups in fully developed region of CFB riser were developed, which is in good agreement with the experimental data of this work and accords with the correlations reported in literatures.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2005年第5期613-618,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金--海外青年学者基金资助项目(29928005) 国家高速水力学重点实验室开放基金(03-01)。
关键词 循环流化床 提升管 充分发展段 颗粒浓度 气固两相流 CFB riser fully developed section solids holdup gas-solid two-phase flow
  • 相关文献

参考文献14

  • 1赵贵兵,阳永荣.流化床压力波动多尺度多分形特征[J].高校化学工程学报,2003,17(6):648-654. 被引量:19
  • 2李晓祥,石炎福,黄卫星,漆小波,余华瑞,祝京旭.基于混沌和人工神经网络方法建立计算气固循环流化床局部颗粒浓度时间序列的非线性模型[J].高校化学工程学报,2003,17(5):580-584. 被引量:2
  • 3Kunii D, Levenspiel O. Flow modeling of fast fluidized bed [A]. Basu P, Hasatani M, Horio M, eds. Circulating Fluidized Bed Technology Ⅲ [C]. Oxford: Pergamon press, 1991, PP91-98.
  • 4Issangya A S. Flow Dynamics in High Density Circulating Fluidized Beds [D]. Vancouver, Canada: University of British Columbia, 1998.
  • 5Ouyang S, Potter O E. Consistency of circulating fluidized bed experimental data [J]. Ind Eng Chem Res, 1993, 32: 1041-1045.
  • 6Pugsely T S, Patience G S, Berruti F, Chaouki J. Modelling the oxidation of n-butane to maleic anhydride in a circulating fluidized bed reactor [J]. Ind Eng Chem Res, 1992, 31: 2652-2600.
  • 7Bi H T, Zhu J X. Static instability analysis of circulating fluidized bed and the concept of high density risers [J]. AIChE J, 1993, 39: 1272-1280.
  • 8Bai D, Kato K. Quantitative estimation of solids holdups at dense and dilute regions of circulating fluidized beds [J]. Powder Technol, 1999, 101: 183-190.
  • 9黄卫星,石炎福,祝京旭.上行气固两相流充分发展段的颗粒浓度[J].化工学报,2001,52(11):963-968. 被引量:7
  • 10Grace J R, Tuot J. A theory for cluster formation in vertically conveyed suspension of intermediate density [J]. Trans IChemE, 1979, 57: 49-54.

二级参考文献30

  • 1Zhou H, Lu J, Lin L. Turbulence structure of the solid phase in transition region of a circulating fluidized bed [J]. Chem Eng Sci, 2000, 55: 839-847.
  • 2Ren J, Mao Q, Li J, Lin W. Wavelet analysis of dynamic behavior in fluidized beds [J]. Chem Eng Sci, 2001, 56: 981-988.
  • 3Hurst H E. Long-term storage capacity of reservoirs [J]. Trans Am Soc Civil Engrs, 1951, 116: 770-808.
  • 4Feder J. Fractals [M]. New York: Plenum Press, 1988.
  • 5Daubechies I. Orthonormal bases of compactly supported wavelets [J]. COlBIB Pure Appl Math, 1988, 41: 909-996.
  • 6Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans Pattern Anal Mach Intell, 1989, 11(7): 674-693.
  • 7Li Jing-hai, Kwauk Mooson. Particle-Fluid Two-Phase Flow - The Energy-Minimization Multi-Scale Method [M]. Beijing:Metallurgical Industry Press, 1994.
  • 8Zhao G B, Chen J Z, Yang Y R. Predictive model and deterministic mechanism in a bubbling fluidized bed [J]. AIChE J, 2001,47(7): 1524-1532.
  • 9Fan L T, Neogi D, Yashima M, Nassar R. Stochastic analysis of a three-phase fluidized bed: fractal approach [J]. AIChE J,1990, 36(10): 1529-1535.
  • 10Franca F, Acikgoz M, Jr Lahey R T, Clausse A. The use of fractal techniques for flow regime identification [J]. Int J Multiphase Flow, 1991, 17(4): 545-552.

共引文献36

同被引文献39

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部