期刊文献+

基于局部对偶框架的数字脊波重构 被引量:1

原文传递
导出
摘要 给出了数字脊波重构算法的全局对偶框架(GDF)表示,提出了局部对偶框架(LDF)的新概念,并讨论了LDF的性质,在此基础上给出了一种基于LDF的新的数字脊波重构算法.该算法减少了脊波重构的冗余,保持了快速计算的特点.用该算法对图像进行压缩和去噪,得到了很好的结果.
作者 白键 冯象初
出处 《中国科学(E辑)》 CSCD 北大核心 2005年第10期1072-1082,共11页 Science in China(Series E)
  • 相关文献

参考文献10

  • 1Donoho D L. Orthonormal Ridgelets And Linear Singularities. SIAM J. MATH.ANAL, 2000, 31(5): 1062~1099.
  • 2Minh N Do, Vetter M. The Finite Ridgelet Transform For Image Representation. IEEE Trans. Image Processing, 2003, 12(1): 16~28.
  • 3Averbuch A, Coifman R, Donoho D L, et al. Fast Slant Stack: A notion of Radon Transform for Data in a Cartesian Grid which is Rapidly Computible, Algebraically Exact, Geometrically Faithful and Invertible. http://www-stat.stanford.edu/~donoho/Reports.
  • 4Donoho D L, Flesia A G. Digital Ridgelet Transform based on True Ridge Functions. http://www.stat. Stanford.edu/donoho/Report.
  • 5MallatS.信号处理的小波导引,杨力华等译[M].北京:机械工业出版社,2003..
  • 6冯象初 甘小冰 宋国乡.数值泛函与小波分析[M].西安:西安电子科技大学出版社,1997..
  • 7Beylkin G. Discrete radon tansform. IEEE Tans ASSP, 1987, 35(1): 162~172.
  • 8Auscher P, Weiss G, Wickerhauser M V. Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. Wavelets: A tutorial in Theory and Applications. Boston: Academic Press, 1992, 237~256.
  • 9Grochenig K. Acceleration of frame algorithm. IEEE Trans. Signal Processing, 1993, 41(12): 3331~3340.
  • 10Starck J L, Candes E J, Donoho D L. The Curvelet transform for image denoising. IEEE Trans. Image Processing, 2002, 11(6): 670~684.

同被引文献9

  • 1白键,冯象初.图像处理的一种有限脊波自适应方法[J].电子学报,2006,34(6):1058-1061. 被引量:3
  • 2李旭超,朱善安.小波域图像降噪概述[J].中国图象图形学报,2006,11(9):1201-1209. 被引量:42
  • 3JAFARI-KHOUZANI K, SOLTANIAN-ZADEH H. Rotation-invariant multiresolution texture analysis using radon and wavelet transform [J]. IEEE Transactions on Image Processing, 2005, 14(6) : 783 - 795.
  • 4DO M N, VETTERLI M. The finite Ridgelet transform for image representation[J]. IEEE Transactions on Image Processing, 2003, 12(1): 16-28.
  • 5DONOHO D L. Orthonormal Ridgelets and linear singularities [ J]. SIAM Journal on Mathematical Analysis, 2000, 31 (5): 1062 - 1099.
  • 6DO M N, VETTERLI M. Orthonormal finite Ridgelet transform for image compression [ C]//Proceedings of IEEE International Conference on Image Processing (ICIP). Washington: IEEE Press, 2000: 367 - 370.
  • 7MATUS F , FLUSSER J . Image representations via a finite radon transform [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10) : 996 - 1006.
  • 8CHANG S G, YU BIN, VETTERLI M. Adaptive wavelet thresholding for image denoising and Compression [ J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532- 1546.
  • 9DONOHO D L. Denoising via soft-thresholding [J]. IEEE Transactions on Information theory, 1995, 41 (3) : 613 - 627.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部