期刊文献+

基于神经网络的动态轧制中摩擦因数仿真估算 被引量:1

Simulating Estimate Based on Neural Network for Friction Factor in Dynamic Rolling Process
下载PDF
导出
摘要 基于多层前馈人工神经网络原理,研究了冷轧机组动态轧制过程中轧辊与轧件间摩擦因数的估算新方法.将轧制过程中摩擦因数视为轧制温度、润滑剂黏度、轧制速度等多参量共同作用的多变量非线性函数,采用神经网络非线性映射功能,构建了摩擦因数与影响参数之间的复杂函数关系的数学模型,提出了轧制过程中动态摩擦因数的神经网络插值逼近算法.同时编制程序进行多参数共同作用下的摩擦因数实例仿真分析,结果表明研究方法的可行性. Based on feed forward multi-layer artificial neural network, a new way to estimate the friction factor between roller and workpiece was studied. The factor was taken as a multi-variable non-linear function which was affected jointly by such independent parameters as rolling temperature, lubricant viscosity and rolling speed. The nonlinear mapping of artificial neural network was used to construct a complicated mathematical model in terms of dynamic friction factor and influencing parameters. An interpolation-approximation method based on ANN was proposed and programmed to estimate the working friction factor in rolling process, with a simulation done as an example. The results showed that the new method provides a means available to control and stabilize effectively the rolling process without slippage and prevent it from unbalanced load.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第10期946-948,共3页 Journal of Northeastern University(Natural Science)
基金 辽宁省博士启动基金资助项目(2001102017)
关键词 轧制 摩擦因数 神经网络 打滑 负荷不平衡 roll friction factor neural network slippage unbalanced load
  • 相关文献

参考文献9

  • 1Ford H, Ellis F, Pass R. Cold rolling with strip tension, Part 1A new approximate method of calculation and comparison with other methods[J]. Journal of the Iron and Steel Institute, 1951,168:57-72.
  • 2Roberts W L. Computing the coefficient of friction in the roll bite mill data[J]. Blast Furnace and Steel Plant, 1967,8(6):499.
  • 3Taylor R L, Beresfordand P J, Wilson E L. A nonconforming element for stress analysis[J]. Int J Num Mech, 1976,10(4):78.
  • 4Huang S H, Zhang H C. Artificial neural network in manufacturing: concepts,applications, and perspectives[J]. IEEE Transaction on Components, Packaging and Manufacturing Technology, 1994,17(2):212-228.
  • 5Rumelhart D E, Hinton G E. Learning internal representations by back-propagation error[J]. Nature, 1986,323(9):533-536.
  • 6Magnitskii N A. Some new approaches to the construction and learning of artificial neural networks[J]. Computational Mathematics and Modeling, 2001,12(4):293-304.
  • 7Ergeinger S, Thomsen E. An accelerated learning algorithm for mulitilayer perceptrons:optimization layer by layer[J]. IEEE Trans on Neural Networks, 1995,6(1):31-42.
  • 8侯祥林,张春晖,徐心和.多层神经网络共轭梯度优化算法及其在模式识别中的应用[J].东北大学学报(自然科学版),2002,23(1):20-23. 被引量:16
  • 9侯祥林,胡英,李永强,徐心和.多层人工神经网络合理结构的确定方法[J].东北大学学报(自然科学版),2003,24(1):35-38. 被引量:36

二级参考文献10

  • 1侯祥林.非线性系统故障的分形和神经网络智能诊断方法研究[M].沈阳:东北大学,1990.60-69,102-103.
  • 2Auziner W, Stetter H J. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations[J]. Series of Number Math, 1988,(86):11-30.
  • 3Rumelhart D E, Hinton G E,Williams R J. Learning Internal representations by error propagation in parallel distributed processing[M]. Gambridgef:MIT Press, 1986.318-362.
  • 4Huang S H, Zhang H C. Artificial neural network in manufacturing:concepts,applications,and perspectives[J]. IEEE Transaction on Components,Packaging and Manufacturing Technology, 1994,17(2):212-228.
  • 5Rumelhart D E, Hinton G E. Learning internal representations by back-propagation error[J]. Nature,1986, 323(9):533-536.
  • 6Magnitskii N A. Some new approaches to the construction and learning of artificial neural networks[J]. Computational Mathematics and Modeling, 2001,12(4):293-304.
  • 7Guh R S, Tannock J D T. A neural network approach to characterize pattern parameters in process control charts[J]. Journal of Intelligent Manufacturing, 1999,10(5):449-46.
  • 8Alexander G P,Bentito F A. An accelerated learning algorithm for multi-layer perceptron network[J]. IEEE Trans on Neural Networks, 1994,5(3):493-497.
  • 9侯祥林,陈长征,虞和济,王铁光,纪盛青.神经网络权值和阈值的优化方法[J].东北大学学报(自然科学版),1999,20(4):447-450. 被引量:49
  • 10侯祥林,张春晖,徐心和.多层神经网络共轭梯度优化算法及其在模式识别中的应用[J].东北大学学报(自然科学版),2002,23(1):20-23. 被引量:16

共引文献50

同被引文献7

  • 1连家创 刘宏民.板厚板形控制[M].北京:兵器工业出版社,1996..
  • 2傅作保.冷轧薄钢板生产[M].北京:冶金工业出版社,2005.
  • 3Li Chunhua, Zhu Xinjian, Cao Guangyi, et al. A maximum power point tracker for photovohaic energy systems based on fuzzy neural networks[J]. Journal of Zhejiang University Science A,2009,10(2):263-264.
  • 4I SHI B, L Y X. YU X H, et al. A modified parliele swarm Optimization and radial basis function neural network hybrid algorithm model and its application[C]. 2009 WRI Global Congress on Intelligent Systems (GCIS 2009),2009, 1:134-138.
  • 5SENTHIL A M. RAO M V C, CHANDRAMOHAN A. A new and improved version of particle swarm optimization algorithm wilh global-local best parameters[J]. Knowledge and lnforma|ion Systems. 2008. 37(8):15-26.
  • 6彭勇,唐国磊,薛志春.基于改进人工鱼群算法的梯级水库群优化调度[J].系统工程理论与实践,2011,31(6):1118-1125. 被引量:25
  • 7李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:882

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部