期刊文献+

网络流量的半马尔可夫模型 被引量:9

A Semi-Markov Model for Network Traffic
下载PDF
导出
摘要 引入半马尔可夫模型描述网络流量特性,通过忙阈值和闲阈值的设定将网络流量划分为四种状态:忙、空闲、上升和下降,研究各状态下的网络流量特性及各状态间的相互转换关系.通过网络协议性能分析,在一定的假设条件下推出IP网络流量在处于忙状态时服从几何布朗运动,在空闲状态下服从正态分布,在上升状态或下降状态下服从指数分布.对广域网和局域网的实际流量数据的分析和检验表明,95%的数据均服从相应状态下的上述随机分布,同时根据此模型计算的系统平均利用率与实际统计结果之间的相对误差小于5%,说明引入的模型能真实反映网络流量特性. This paper presents a Semi-Markov Model to characterize network traffic. The model divides network traffic into four states: Busy, idle, rising and falling, through setting busy and idle thresholds to network traffic. Analysis show that the average traffic transmission rate under busy state follows geometrical brown motion, that under idle state follows normal distribution, and that under rising or falling states follows exponential distribution respectively. Some practical trace data from WAN and LAN is employed to verify the model separately. 95% trace data really follows its corresponding stochastic distribution in each state. Meanwhile, taking the average network utilization as a parameter example, the theoretical result computed by the model is very consistent with the real statistical result. The relative error is within 5%, which shows how the model is well matched to real network traffic.
出处 《计算机学报》 EI CSCD 北大核心 2005年第10期1592-1600,共9页 Chinese Journal of Computers
基金 国家自然科学基金(90104006)资助~~
关键词 网络流量模型 半马尔可夫模型 几何布朗运动 network traffic model semi-Markov model geometrical brown motion
  • 相关文献

参考文献4

二级参考文献29

  • 1薛飞.自相似网络业务的建模分析与性能评价研究(博士学位论文)[M].天津:天津大学,1998..
  • 2[1]Leland W, Taqqu M, Willinger W, et al. On the self-similar nature of Ethernet traffic[J]. IEEE/ACM Transactions on Networking, 1994,2(1):1~15.
  • 3[2]Riedi R H, Crouse M S, Ribeiro V J, et al. A mul-tifractal wavelet model with application to network traffic[J]. IEEE Transactions on Information Theory, 1999,45(3):992~1018.
  • 4[3]Erramilli A, Narayan O, Willinger W. Experimental queueing analysis with long-range dependent packet traffic[J]. IEEE/ACM Transactions on Networking, 1996, 4(2): 209~223.
  • 5[4]Beran J. Statistical methods for data with long range dependence[J]. Statistical Science, 1992, 7(4): 404~427.
  • 6[5]Barford L A, Fazzio R S, Smith D R. An introduc-tion to wavelets[R]. HPL-92-124, Instrument and Photonics Laboratory, Hewlett-Packard Company, 1992.
  • 7[6]Abry P,Veitch D.Wavelet analysis of long range de-pendent traffic[J]. IEEE Transactions on Information Theory, 1998,44(1): 2~15.
  • 8[7]Paxson V. Fast approximation of self-similar net-work traffic[R]. LBL36750, Lawrence Berkeley Lab. and EECS Division, University of California, Berkeley,1995.
  • 9[8]Internet traffic archive[EB/OL]. http://ita.ee.lbl.gov/,2002.
  • 10[9]Crovella M E, Bestavros A. Self-similarity in world wide Web traffic: evidence and possible causes[J]. IEEE/ACM Transactions on Networking, 1997, 5(6): 835~846.

共引文献43

同被引文献57

引证文献9

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部