期刊文献+

基于当地流活塞理论的气动弹性计算方法研究 被引量:34

NUMERICAL METHOD OF AEROELASTICITY BASED ON LOCAL PISTON THEORY
下载PDF
导出
摘要 发展了一种高效、高精度的超音速、高超音速非定常气动力计算方法——基于定常CFD技术的当地流活塞理论.运用当地流活塞理论计算非定常气动力,耦合结构运动方程,实现超音速、高超音速气动弹性的时域模拟.运用这种方法计算了一系列非定常气动力算例和颤振算例,并和原始活塞理论、非定常Euler方程结果作了比较.由于局部地使用活塞理论假设,这种方法大大地克服了原始活塞理论对飞行马赫数、翼型厚度和飞行迎角的限制.与非定常Euler方程方法相比,当地流活塞理论的效率很高. Existing piston theory for supersonic flow can only deal with thin supersonic wing with sharp leading edge at small angles of attack. The unsteady CFD technology basing on Euler/N-S equations can solve the unsteady aerodynamic loads precisely, but it often needs much computational time even just for a simple 3D shapes. This paper presents a local piston theory for calculating supersonic unsteady aerodynamic loads due to structural motion or deformation. A steady flow solution is first obtained by an Euler method. The piston theory is applied locally at each point on the airfoil surface on top of the mean steady flow field to obtain the unsteady pressure perturbations caused by the deviation of the airfoil surface from its mean location. Computations by this method are performed for a number of unsteady flows and flutter results. The results are compared with those by the classical piston theory and fully unsteady Euler calculations. Because the piston theory is used only locally, this method greatly reduces the limitations of the classical piston theory on flight Mach number, airfoil thickness, and angles of attack. Compared to the fully unsteady Euler method, the local-piston theory method is very efficient. Only one steady-state solution is needed for the time-domain unsteady calculations.
出处 《力学学报》 EI CSCD 北大核心 2005年第5期632-639,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10432040)西北工业大学博士论文创新基金(CX200402)资助项目.~~
关键词 当地流活塞理论 CFD 超音速 高超音速 非定常气动力 气动弹性 颤振 local piston theory, CFD, supersonic, hypersonic, unsteady aerodynamics, aeroelasticity, flutter
  • 相关文献

参考文献10

  • 1Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for aeroelastician. Journal of Aeronautical Science,1956, 23(12): 1109~1118.
  • 2Gupta KK, Voelker LS. CFD-based aeroelastic analysis of the X-43 hypersonic flight vehicle. AIAA paper 01-0712,2001.
  • 3Chen RR, Blosser ML. Metallic thermal protection system panel flutter study. AIAA paper 02-0501, 2002.
  • 4张伟伟,樊则文,叶正寅,杨炳渊.超音速、高超音速机翼的气动弹性计算方法[J].西北工业大学学报,2003,21(6):687-691. 被引量:14
  • 5Dowell E, Tang D. Nonlinear aeroelasticity and unsteady aerodynamics. AIAA-2002-0003.
  • 6Cowan T J, Andrew SA J, Gupta KK. Accelerating computational fluid dynamics based aeroelastic predictions using system identification. Journal of Aircraft, 2001, 38(1):81~87.
  • 7Marzocca P, Silva WA, Librescu L. Open/closed-loop nonlinear aeroelasticity for airfoils via volterra series approach.AIAA-2002-1484.
  • 8陈劲松,曹军.超声速和高超声速翼型非定常气动力的一种近似计算方法[J].空气动力学学报,1990,8(3):339-344. 被引量:29
  • 9杨炳渊,宋伟力.用当地流活塞理论计算大攻角翼面超音速颤振[J].振动与冲击,1995,14(2):60-63. 被引量:26
  • 10Dowell ET, Curtiss HC, Scanlan RH, et al. A Modern Course in Aeroelasticity. 3rd Revised and Enlarged Edition. Kluwer Academic Publishers, 1995.

二级参考文献7

共引文献47

同被引文献477

引证文献34

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部