期刊文献+

关于Alzer不等式的注记 被引量:1

Note on Alzer′s Inequality
原文传递
导出
摘要 设n为自然数,则对所有的实数r,nn+1<n1∑i=n1irn+11∑ni+=11ir1/r<1.两个界是最好可能的. Let n be a natural number, then for all real numbers r,n/(n+1)〈(1/n n↑∑↓i=i i^r/1/(n+1) (n+1)↓∑↓i=1)^1/r〈1.Both bounds are best possible.
作者 陈超平 祁锋
出处 《数学的实践与认识》 CSCD 北大核心 2005年第9期155-158,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金资助(10001016) 河南省杰出青年科学基金(0112000200) 河南省高等学校创新人才培养工程基金资助
关键词 Alzer不等式 幂平均 柯西中值定理 数学归纳法 Alzer's inequality power mean Cauchy's mean-value theorem mathematical induction
  • 相关文献

参考文献6

  • 1Minc H, Sathre L. Some inequalities involving (r1)1/r [J]. Proc Edinburgh Math Soc, 1964/65, (14): 41-46.
  • 2Alzer H. On an inequality of H. Minc and L. Sathre[J]. J Math Anal Appl, 1993, (179): 396-402.
  • 3Martins J S. Arithmetic and geometric means, an application to Lorentz sequence spaces[J]. Math Nachr, 1988,(139): 281-288.
  • 4Ume J S. An elementary proof of H. Alzer's inequality[J]. Math Japon, 1996, (3): 521-522.
  • 5Sándor J. On an inequality of Alzer[J]. J Math Anal Appl, 1995, (192): 1034-1035.
  • 6Chen Chao-ping, Qi Feng. Notes on proofs of Alzer's inequality[J]. Octogon Mathematical Magazine, 2003, (1):29-33.

同被引文献6

  • 1Minc H, Sathre L. Some inequalities invoing (r!)(r! )^1/r[J]. Proc Edinburgh Math Soc, 1964/65, (14) : 41-46.
  • 2Alzer H. On an inequality of H. Minc and L. Sathre[J]. Math Anal Appl, 1993, 9(179) : 396-402.
  • 3Martins J S. Arithmetic and geometricmeans. An application to Lorentz sequence spaces[J]. Math Nachr, 1988.(139) : 281-288.
  • 4Ume J S. An elementary proof of Alzer's inequality[J]. Math Japon, 1996. (3) : 521-522.
  • 5Sandor J. On an inequality of Alzer[J]. J Math Anal Appl, 1995, (192):1034-1035.
  • 6Chen Chan-ping, Qi Feng. Notes on proofs of Alzer's inequality[J]. Octogon Mathematical Magazine, 2003. (1) :29-33.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部