期刊文献+

一种电子商务站点个性化方法 被引量:3

An Approach of Personalization for Electronic Commerce Website
下载PDF
导出
摘要 电子商务站点个性化建设所采用的一种重要方法就是通过站点使用挖掘得到用户的兴趣和爱好,并以此进行个性化推荐.本文针对这种方法的局限性,提出了一种新的个性化方法,即:在数据预处理的基础上实现基于站点使用和站点内容的交易事务聚类,然后导出站点的使用文档和内容文档,在此基础上结合当前用户会话形成基于站点使用和站点内容的个性化推荐集,最后在整合两种推荐集的基础上完成个性化推荐. Usage-based personalization is a very important method of personalization for electronic commerce website. Aiming at this method's limitations, this article proposes a new method, which process is clustering the transactions based on website usage and content respectively, discovering usage and content profiles, forming recommendation sets based on usage and content profiles respectively, integrating two recommendation sets for personalization.
出处 《情报学报》 CSSCI 北大核心 2005年第5期567-572,共6页 Journal of the China Society for Scientific and Technical Information
关键词 电子商务站点 个性化服务 交易事务文件 个性化页面 个性化推荐集 K-MEANS electronic commerce, website, personalization, k-means.
  • 相关文献

参考文献8

  • 1M. Sweiger, et al. Clickstream Data Warehousing. New York :John Wiley & Sons Inc, 2002.
  • 2B. Mobasher, et al. Discovery and evaluation of aggregate usage profiles for web personalization. Data Mining and Knowledge Discovery, 2002(6) :61 - 82.
  • 3B.Mobasher, R. Cooley, and J.Srivastava. Automatic personalization based on Web usage mining. Communications of the ACM, 2000(8):142- 151.
  • 4R.Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining World Wide Web browsing patterns. Journal of Knowledge and Information Systems, 1999( 1 ):5 - 32.
  • 5Jiawei Han, Micheline Kambr. Data Mining Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers, 2000.
  • 6B. Mobasher, et al. Discovery of aggregate usage profiles for web personalization. In. Proceedings of the Web Mining for ECommerce Workshop (WEBKDD'00), Boston, 2000.
  • 7D. D. Lewis, et al. Training algorithms for linear text classifiers.In. Proceedings of the Nineteenth International ACM SIGIR Conference on Research and Development in Information Retrieval, 1996. 298 - 306.
  • 8Yang Y. Expert network: effective and efficient learning from human decisions in text categorization and retrieval. In :Proceedings of the Seventeenth International ACM SIGIR Conference on Research and Development in Information Retrieval, 1994.13 - 22.

同被引文献13

  • 1余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践,2004,24(8):96-101. 被引量:45
  • 2涂承胜,陆玉昌.Web使用挖掘技术研究[J].小型微型计算机系统,2004,25(7):1177-1184. 被引量:37
  • 3R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining World Wide Web browsing patterns [ J ]. Journal of Knowledge and information Systems,1999,(1) :5-32.
  • 4Jaideep Srivastava et al.Web Usage Mining:Discovery and Applications of Usage Patterms from Web Data[J] .SIGKDD Explorations,2000, (2) : 12- 23.
  • 5R. Cooley, B. Mobasber,and J. Srivastava. Web mining: Information and pattern discovery on the world wide web[C]. In Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence(ICTAI'97), 1997.558 - 567.
  • 6Daqing He,Ayse Goker.Detecting Session Boundaries from Web User Logs[C]. In 22nd Annual Colloquium on IR Reasearch,Cambridge UK, 2000.57- 66.
  • 7Nichols David M.Implicit Ratings and Filtering[C].In Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering,Budapaest,Hungary, ERCIM, 1997.10- 12.
  • 8Douglas W.Orad and Jinmook Kim.Implicit Feedback for Recommender Systems[C].In Proceedings of the AAAI Workshop on Recommender Systems,Madison,1998.81-83.
  • 9郭庆琳,李艳梅,唐琦.基于VSM的文本相似度计算的研究[J].计算机应用研究,2008,25(11):3256-3258. 被引量:101
  • 10李树青,徐侠.CtoC电子商务站点中的个性化推荐技术[J].商场现代化,2009(18):72-73. 被引量:2

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部