期刊文献+

利用全息透镜阵列实现多通道分数傅里叶变换 被引量:1

Implementation of the Multichannel Fractional Fourier Transform Using Holographic Lens Array
下载PDF
导出
摘要 提出利用全息透镜阵列来实现多通道分数傅里叶变换技术。分析了全息透镜阵列的制作原理,对多个物体实现了分数阶次各不相同的多通道分数傅里叶变换,并与光学透镜实现的实验结果进行了比较,两者的分数频谱互相一致。这种技术在多通道光学信息处理系统及多目标图像识别系统等方面有非常重要的应用。 In this paper, a technology of implementation of the multichannel fractional Fourier transform(FRT) is proposed using holographic lens array. The principle of making holographic lens array is analyzed. The multichannel FRT with different fractional order is implemented for several objects. We have compared the experimental results of FRT using holographic lens array with that using optical lens. As a result, both fractional spectra are consistent. The mutichannel FRT can be applied in the multichannel optical information processing and the mutitarget recognition.
出处 《激光与红外》 CAS CSCD 北大核心 2005年第10期762-764,共3页 Laser & Infrared
基金 浙江省自然科学基金(No.M603212)资助项目
关键词 分数傅里叶变换 全息透镜阵列 多通道 fraactional Fourier transform holographic lens array muhichannel
  • 相关文献

参考文献7

  • 1Mendlovic D,Ozaktas H M. Fractional F ourier transforms and their optical implementation I [J]. J. Opt. Soc. Am.A,1993,10(9) :1875 - 1881.
  • 2Ozaktas H M, Mendlovic D. Fractional fourier transforms and their optical implementation Ⅱ [ J ]. J. Opt. Soc. Am.A,1993,10(12) :2522 -2531.
  • 3Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform[ J]. J. Opt. Soc. Am. A, 1993,10(10) :2181 -2186.
  • 4黄奇忠,杜惊雷,张怡霄,高福华,高峰,郭永康.用全息透镜实现分数傅里叶变换[J].四川大学学报(自然科学版),1999,36(5):892-902. 被引量:4
  • 5郭永康,黄奇忠,杜惊雷,张怡霄,姚军,高峰.用全息元件实现变形分数傅里叶变换[J].中国激光,2000,27(8):719-723. 被引量:5
  • 6王红霞,何俊发,赵选科,竹有章,李俊,姜娜.用多焦点全息透镜实现多重谱分数傅里叶变换[J].光子学报,2002,31(9):1109-1111. 被引量:3
  • 7Yangsu Zeng, Yongkang Guo, Fuhua Gao, et al. Principle and application of multiple fractional Fourier transform holography [ J]. Optics Communications,2003,215:53 - 59.

二级参考文献11

  • 1赵学山 张以谟.用全息透镜组成傅里叶系统[J].光学学报,1983,3(5):410-414.
  • 2Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation: 1. J Opt Soc Am (A), 1993, 10 (9):1875~1881
  • 3Lohmann A W.Image rotation, Wigner rotation and the fractional Fourier transform.J Opt Soc Am (A), 1993,10(10): 2181~2186
  • 4Mendlovic D. Ozaktas H M, Lohmann A W. Fractional correlation. Appl Opt,1995,34(2):303~309
  • 5Ozaktas H M, Arikan O. Space-bandwidth-efficient realizations of linear systems. Opt Lett,1998, 23(14):1069~1071
  • 6Renu T, Gour S P, Kehar S. Nonlinear processing and fractional-order filtering in a joint fractional Four-transform correlator: performance evaluation in multiobject recognition.Appl Opt,2001,40(17):2844~2859
  • 7于美光. 光全息学及其应用. 北京:北京理工大学出版社, 1996:72-75
  • 8赵学山,光学学报,1983年,3卷,5期,410页
  • 9Zhao Xueshan,光学学报,1983年,35卷,410页
  • 10黄奇忠,杜惊雷,张怡霄,高福华,高峰,郭永康.用全息透镜实现分数傅里叶变换[J].四川大学学报(自然科学版),1999,36(5):892-902. 被引量:4

共引文献7

同被引文献22

  • 1赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364. 被引量:126
  • 2Lohmann A W. Image rotation, wigner rotation, and the fractional fourier transform [ J ]. Journal of the Optical So- ciety America A, 1993,10 (10) :2181-2186.
  • 3Fan Hongyi, Fan Yue. EPR entangled states and complex fractional Fourier transformation [ J ]. European Physical Journal D,2002,21 (2) :233-238.
  • 4Sejdic E, Djurovic I, Stankovic L. Fractional Fourier trans- form as a signal processing tool:an overview of recent de- velopments [ J ]. Signal Process, 2011,91 (6) : 1351-1369.
  • 5Ozaktas H M, Ankan O, Kutay M A, et al. Digital computa- tion of the fractional Fourier transform [ J]. IEEE Transac- tions On Signal Processing, 1996,44(9) :2141-2150.
  • 6Kutay M A. fracF, m: Fast computation of the fractional fourier transform [ EB/OL]. [ 2015-08-09 ]. http://www. ee. bilkent, edu. tr/- haldun/fracF, m.
  • 7Bultheel A. frft. m: Calculation of the fractional Fourier transform [ EB/OL]. [2015-08-09]. http://nalag, cs. kuleuven, be/research/software/FRFT/frft, m.
  • 8Pellat-Finet P. Fresnel diffraction and the fractional-order Fourier transform [ J]. Optics Letters, 1994, 19 ( 18 ) : 1388-1390.
  • 9Garcia J, Mas D, Dorsch R. Fractional-Fourier transform calculation through the fast-Fojrier-transform algorithm [ J ]. Applied Optics, 1996,35 (35) :7013-7018.
  • 10Yang Xingpeng, Tan Qiaoferlg. Improved fast fractional- Fourier-transform algorithm [ J ]. Journal Optical Society America A,2004,21 (9) : 1677-1681.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部