摘要
关联规则是描述Web用户行为特征的重要依据。传统的基于统计学的Web关联规则挖掘算法注重对现有数据的分析,不能针对Web关联挖掘的特点提供有效的预测手段和优化反馈措施。本文提出一种基于遗传算法的Web关联挖掘算法体系,实验证明它能弥补传统Web关联挖掘算法的不足,为Web关联挖掘提供了一种新的思路。
Association rules are import basis of describing Web users' behavior characteristic, Traditional algorithms of Web associaion rules mining, based on statistics, pays attention to to the analysis on providing data, they can't offer effective predictive means and optimizing measure of feedback, This paper present a kind of system of the Web association rules mining based on genetic algorithm, which proves by experiment that it can mend the traditional Web association mining algorithm, and it gives out a new idea for Web association rules mining,
出处
《微电子学与计算机》
CSCD
北大核心
2005年第10期4-6,11,共4页
Microelectronics & Computer
关键词
数据挖掘
Web关联规则
遗传算法
增量挖掘
机器学习
Data Mining, Web Association Rules, Genetic Algorithm, Increment Mining, Machine Learning