期刊文献+

ICA不确定性问题在圆度误差分离中的解决措施

Solving Method of ICA Ambiguity Problem in Roundness Error Separation
下载PDF
导出
摘要 独立分量分析方法(Independentcomponentanalysis,简称ICA)在国内尚属一门新型的方法。文章介绍了ICA的无噪声模型、原理、预处理、非高斯性量度以及快速定点算法,重点讨论了ICA的不确定性在圆度误差分离中的处理方法。仿真结果表明,基于独立分量分析的圆度误差分离技术比传统的频域法和时域法更简单、实用、高效,同时由ICA分离出的信号不确定性问题得到了很好的解决。 Independent component analysis (ICA) is a new method in abroad. The ICA noiseless model, principles, preprocessing, measures of non-Gaussianity and fast ICA algorithm are introduced. The method of processing the ambiguities of ICA in roundness error separation is emphasized. The emulation result shows that the roundness error separation technique (EST) based on ICA is simple, practical and efficient, which is better than the traditional frequency-domain and time-domain method. The problems of ambiguities are well solved.
作者 张梅 金施群
机构地区 合肥工业大学
出处 《工具技术》 北大核心 2005年第10期56-59,共4页 Tool Engineering
  • 相关文献

参考文献5

  • 1Aapo Hyvarinen. Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans. on Neural Networks. 1999,10(3):626~634.
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3A Hyvarinen, E Oja. Independent component analysis: algorithms and applications. Neural Networks, 2000,13: 411~430.
  • 4Tan Jiubin et al. Proceedings of the second international symposium in instrumentation science and technology.Harbin: Harbin Institute of Technology, 2002.3-323~3-327.
  • 5李岩 梁晋文 花国梁.大轴圆度误差端面跳动的临床测量[C]..全国高校互换性与测量技术研讨会第二届年会[C].,1988..

二级参考文献51

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部