摘要
以铬青铜热反挤压过程中凸模锥角、断面缩减率以及温度和挤压力的关系为研究对象,在Matlab语言环境下,以高温反挤压试验数据作为训练和预测样本,用2、3节点的双隐层BP型神经网络对钢材单位挤压力进行了预测。结果表明此方法预测铬青铜反挤压力是有效和可行的。
The paper takes the relationship between punch angle, ratio of section reduction, extrusion temperature and extrusion force as the research object. Taking experimental data of backward extrusion as the samples for training and predicting, it predicts extrusion pressure using double hidden layer BP model with two and three nodes under Matlab language environment, The results indicate that this way is a valid and feasible way for predicting the extrusion load.
出处
《锻压技术》
CAS
CSCD
北大核心
2005年第5期77-80,共4页
Forging & Stamping Technology
基金
河南省科技攻关计划项目(20024600005)
关键词
BP神经网络
反挤压
挤压力
BP neural network
backward extrusion, extrusion load