摘要
在大失谐条件下,使用时序算子T的二级微扰展开讨论了单模光学腔中放置不同原子时有效哈密顿量的形式;并进一步讨沦了在真空光学腔场中,初态为直积态的两不同原子状态随时间的演化规律,研究的结果显示:(1)两不同原子具有|△1-△2|》max(g1,g2)或△1+△2=0性质时,态在演化过程中保持仍为直积态的形式,不会出现纠缠态的情形,(2)两不同原子具有|△1-△2|《maX(g1,g2)性质时,态在演化过程中出现纠缠态的情形,在特定的时刻出现最大纠缠态。
We use a second order perturbation expansion of the evolution operator T to deduce the efficiency Hamiltonian form of two nonidentical atoms in a highly-detuned optics cavity with single mode; the two nonidentical atoms state vector with time evolution is studied under the initial state in a two-atom direct product in a vacuum optical cavity. The result shows as follow: (1) the two-atom state vector keep a direct state form and do not produce any entangled state under the condition |△1-△2| 〉〉 max(g1,g2) or △1+△2=0,(2) the two-atom state vectors evolve into the entangled state from the initial state in a direct state, and realize a maximal entangled state at a given time under the condition |△1-△2|〈〈max(g1,g2).
出处
《量子电子学报》
CAS
CSCD
北大核心
2005年第5期709-712,共4页
Chinese Journal of Quantum Electronics
基金
福建省教育厅科技计划(JA04259)资助项目闽江学院资助项目
关键词
量子光学
原子纠缠态
有效哈密顿量
布居反转数
quantum optics
atomic entanglement state
efficiency Hamiltonian
population inversion