期刊文献+

奇异协方差阵下前沿组合及无套利分析 被引量:4

Frontier Portfolio and No-arbitrage Analysis with Singular Covariance Matrix
下载PDF
导出
摘要 研究了奇异协方差阵的投资组合选择模型,运用镶边矩阵广义逆方法得到了存在前沿组合的充要条件,并给出了前沿组合的显式解和组合前沿的性质。最后,在奇异协方差阵下进行了无套利分析,得到了市场无套利的充要条件,证明了Szego的猜想。 Portfolio choice model with singular covariance matrix is investigated. Not only the necessary and sufficient conditions for existing frontier portfolio in the capital market are obtained, but also the implicit general solutions of frontier portfolio and some properties of portfolio frontier are derived through the generalized inverse of bordered matrix. Finally, no-arbitrage analysis of the financial market with singular covariance matrix are made, and the necessary and sufiqcient condition for not existing abritarge portfolio is obtained, which proves the conjecture proposed by Szego.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期14-17,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10271120)
关键词 奇异协方差阵 证券组合 组合前沿 无套利分析 singular covariance matrix portfolio portfolio frontier no-arbitrage analysis
  • 相关文献

参考文献8

  • 1SZEGO G P. Portfolio theory: with application to bank asset management[M]. NewYork: Academic, 1980.
  • 2MARKOWITZ H M. Foundations of portfolio theory[J].Journal of Finance, 1991,46:469 - 477.
  • 3STEINBACH M C. Markowitz revisited:mean-variance models in financial portfolio analysis[J]. Siam Review, 2001,43 : 31-85.
  • 4FELDMAN D, REISMAN H. Simple construction of the efficient frontier[J]. European Financial Management, 2003,9:251-259.
  • 5BICK A. The mathematics of the portfolio frontier: a geometrybased approach[J]. The Quarterly Review of Economics and Finance, 2004,44:337 - 361.
  • 6VOROS J. The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity[J].European Journal of Operational Reasearch, 1987,32: 302 -310.
  • 7史树中,杨杰.证券组合选择的有效子集[J].应用数学学报,2002,25(1):176-186. 被引量:23
  • 8熊和平.投资组合协方差矩阵的性质与最优组合的选择[J].中国管理科学,2002,10(2):12-14. 被引量:17

二级参考文献16

  • 1史树中 杨杰.证券组合选择的有效子集.金融数学论坛[M].,2000(5)..
  • 2[1]Markowitz H. Portfolio Selection. Journal of Finance, 1952, 7:77-91
  • 3[2]Markowitz H. Portfolio Selection: Efficient Diversification of Investments. Cambridge: Basil Blackwell, 1959, 1991 Second ed.
  • 4[3]Michaud R O. Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation. Boston: Havard Business School Press, 1998
  • 5[4]Szego G P. Portfolio Theory, with Application to Bank Asset Management. New York: Acad. Press,1980
  • 6[5]Huberman G, Kandel S. Mean-variance Spanning. Journal of Finance, 1987, 42:873-888
  • 7[6]Ross S. Mutual Fund Separation in Financial Theory: The Separating Distributions. Journal of Economic Theory, 1978, 17:254-286
  • 8[7]Merton R C. On the Microeconomic Theory of Investment under Uncertainty. In: Arrow K J, Intriligator M, eds., Handbook of Mathematical Economics, Vol. Ⅱ, Amsterdam: North-Holland, 1982, 601-609
  • 9[8]Merton R C. Continuous-Time Finance, Rev. ed. Oxford: Blackwell, 1992
  • 10[9]Rothschild M, Stiglitz J E. Increasing Risk I: A Definition. Journal of Economic Theory, 1970, 2:225-243

共引文献36

同被引文献22

  • 1周革平.现代资产组合理论的产生与发展综述[J].金融与经济,2004(8):10-12. 被引量:8
  • 2姚海祥,易建新,李仲飞.奇异方差-协方差矩阵的n种风险资产有效边界的特征[J].数量经济技术经济研究,2005,22(1):107-113. 被引量:11
  • 3苏咪咪,叶中行.协方差矩阵奇异情况下的最优投资组合[J].应用概率统计,2005,21(3):244-248. 被引量:18
  • 4Markowitz H. Portfolio selection. Journal of Finance, 1952, 7(1): 77-91.
  • 5Buser S A. Mean-variance portfolio selection with either a singular or nonsingular variance-covariance matrix. Journal of Financial and Quantitative Analysis, 1977, 12(3): 347-361.
  • 6Ryan P J and Lefoll J. A comment on mean-variance portfolio selection with either a singular or nonsingular variance-covariance matrix. Journal of Financial and Quantitative Analysis, 1981, 16(3): 389-395.
  • 7Szego G P. Portfolio Theory: With Application to Bank Asset Management. New York: Academic Press, 1980.
  • 8VoRoS J. The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity. European Journal of Operational Reasearch, 1987, 32(2): 302-310.
  • 9Korki B and Turtle H J. A note on the analytics and geometry of limiting mean-variance investment opportunity sets. Review of Quantitative Finance and Accounting, 1997, 9(3): 289-300.
  • 10Dunne T T and Stone M. Downdating the moore-penrose generalized inverse for cross-validation of centred least squares prediction. Journal of the Royal Statistical Society: Series B, 1993, 55(2): 369-375.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部