期刊文献+

一种基于事务修剪的约束关联规则的挖掘算法 被引量:3

Constraint association-rule mining algorithm based on transaction clip
下载PDF
导出
摘要 针对一类常见而简单的规则中有项或缺项的约束,提出了一种基于事务数据修剪的约束关联规则的快速挖掘算法。该算法先扫描一遍数据库对事务进行水平和纵向的修剪,接着在修剪后的数据集上挖掘频繁项集,形成规则的候选头集、体集和规则项集,最后一次扫描后由最小可信度约束得到所要求的关联规则。实验表明,与按简洁约束采取的一般策略相比,该算法的性能有较明显的提高。 Aiming at a familiar and simple constraint that some items must or must not present in rules, a fast clippedtransaction-based constraint association-rule mining algorithm was put forward, This algorithm firstly scanned data base to clip transactions horizontally and vertically, then mined frequent item sets from clipped data set to form rules' candidate head sets, body sets and rule item sets. Finally, it scanned original data base again to gain association rules according to minimum confidence constraint. Experiments show that, compared with common strategy of succinct constraint, this algorithm has better performance.
作者 陈义明 贺勇
出处 《计算机应用》 CSCD 北大核心 2005年第11期2627-2629,共3页 journal of Computer Applications
关键词 约束 关联规则 事务修剪 挖掘算法 constraint, association rule, transaction clip, mining algorithm
  • 相关文献

参考文献6

  • 1NG R, LAKSHMANAN LVS, HAN J, et al. Exploratory Mining and Pruning Optimizations of Constrained Associations Rules[A]. Proceedings of 1998 ACM-SIGMOD International Conference on Managenment of Data (SIGMOD'98)[C]. Seattle, WA,1998.
  • 2LAKSHMANAN LVS, NG R, HAN J, et al. Optimization of Constrained Frequent Set Queries with 2-variable Constraints[A]. Proceedings of 1999 ACM-SIGMOD International Conference on Management of Data (SIGMOD'99)[C]. Philadelphia, PA, 1999.157-168.
  • 3PEI J, HAN J, LAKSHMANAN LVS. Mining Frequent Itemsets with Convertible Constraints[A]. Proceedings of 2001 International Conference on Data Engineering(ICDE'01)[C].Heidelberg,Germany, 2001.433-440.
  • 4崔立新,苑森淼,赵春喜.约束性相联规则发现方法及算法[J].计算机学报,2000,23(2):216-220. 被引量:62
  • 5AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[A]. 20th VLDB Conference[C], 1994.
  • 6HANJ KAMBERM 范明 孟小峰 译.数据挖掘-概念和技术[M].北京:机械工业出版社,2004..

二级参考文献1

  • 1Han J,Proc of the 21st International Confer-ence on Very L arge Databases,1995年,420页

共引文献61

同被引文献18

  • 1秦亮曦,史忠植.SFPMax——基于排序FP树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223. 被引量:26
  • 2刘莹,郭福亮.基于数组的关联规则挖掘算法[J].计算机与数字工程,2006,34(1):38-40. 被引量:8
  • 3罗可,贺才望.基于Apriori算法改进的关联规则提取算法[J].计算机与数字工程,2006,34(4):48-51. 被引量:22
  • 4张素兰.一种基于事务压缩的关联规则优化算法[J].计算机工程与设计,2006,27(18):3450-3453. 被引量:16
  • 5Han J,Kamber M.Data mining: Concepts and techniques[M].San Francisco:Morgan Kaufrnann Publishers,2001.
  • 6Lee Y, Hong T, Lin W, Mining association rules with multiple minimum supports using maximum constraints[J].Intemational Journal of Approximate Reasoning,2005,40(1):44-54.
  • 7Lee A,Lin W, Wang C.Mining association rules with multidimensional constraints [J]. Journal of Systems and Software, 2006, 79( 1 ): 79-92.
  • 8Wang K,Hc Y, Han J.Pushing support constraints into association rules mining[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(3):642-658.
  • 9Lakshmanan L,Ng R,Han J, et al.Optimization of constrained frequent set queries with 2-variable constraints[J].ACM SIGMOD Record, 1999,28(2): 157-168.
  • 10Han J,Pei J,Ytm Y.Mining frequent patterns without candidate generation[J].ACM SIGMOD Record,2000,29(2): 1-12.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部