期刊文献+

多峰搜索的动态微粒群算法 被引量:9

Particle swarm optimization with dynamic-population for multi-peak searching
下载PDF
导出
摘要 对多峰搜索问题提出了一类动态微粒群算法。该算法通过变换函数将多峰问题中的所有峰变为等高峰,从而保证每个峰都有同等机会被找到;在搜索过程中采用群体规模动态可调的进化方式,使得初始群体可以任意指定,从而克服了标准微粒群算法由于无法事先知道多峰函数峰值点个数而很难确定合适群体大小的困难。实验表明了该算法可以尽可能多地找到峰值点。 A class of dynamic-population particle swarm optimization for searching peaks of some multi-peak functions was proposed. This algorithm transformed all peaks of multi-peak problems into those peaks equally high by functional transformation, in order to find all peaks with the same probability. During the searching the size of particle swarm could be tuned to get any initial size of swarm. So it could solve the problem of determining swarm size because the number of peaks of the given multi-peak function could not be obtained in standard particle swarm optimization. The experiments manifest that the algorithm can search peaks of function as much as possible.
出处 《计算机应用》 CSCD 北大核心 2005年第11期2668-2670,共3页 journal of Computer Applications
关键词 多峰搜索 动态调整 微粒群算法 multi-peak searching dynamic adjusting particle swarm optimization
  • 相关文献

参考文献5

  • 1KENNEDY J, EBERHART R. Particle Swarm Optimization[A].IEEE International Conference on Neural Networks[C]. Perth, Australia, 1995.1942-1948.
  • 2SHI Y, EBERHART R. A modified particle swarm optimizer[A]. IEEE World Congress on Computational Intelligence[C], 1998.69-73.
  • 3刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 4覃俊,康立山.基于动态群体的聚集演化求解多峰函数优化问题[J].中南民族大学学报(自然科学版),2003,22(2):56-59. 被引量:2
  • 5SPEARS WM. Simple subpopulation schemes [A]. Proceeding of the Third Annual Conference on Evolutionary Programming[C]. San Diego, California, USA, 1994.296-307.

二级参考文献10

  • 1Castro L,Zuben L. Learning and optimization using the clonal selection principle evolutionary computation[J] . IEEE Tran , 2002,6(3):34-50.
  • 2Blalzs E, LI Jianping. The effect of distance measure in a GA with species conservation[C]. Proceedings of 2001 IEEE Congress on Evolutionary Computation.New York: Association for Evolutionary Computation, 2001. 67-74.
  • 3Deb K. Multi-objective optimization using evolutionary algorithms[M]. New York: John Wiley Sons Ltd, 2001. 246-394.
  • 4Wu Zhijian, Kang Lishan, Zou Xiufen. A parallel global-local mixed evolutionary algorithm for multimodal function optimization[C]. Proceedings of fifth international conference on algorithms and architectures for parallel processing. Beijing: Association for Parallel Processing, 2002. 247-250.
  • 5MICHALEWICZ Z. Genetic Algorithms + Data Structures = Evolution Programs [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
  • 6WANG Xiufeng, ELBULUK M E. The application of genetic algorithm with neural networks to the induction machines modeling [J].System Analysis Modeling Simulation, 1998,31:93- 105.
  • 7HOLLAND J H. Adaptation in Natural and Artificial System: An Introduction Analysis with Applications to Biology, Control and Artificial Intelligence [M]. Michigan, USA: The University of Michigan Press, 1975.
  • 8GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodel function optimization [C]//Proc of the Second lnt Confon Genetic Algorithms: July 28 - 31, 1987 at the Massachusetts Institute of Technology. Massachusetts, USA: The Massachusetts Institute of Technology Press, 1987:41 -49.
  • 9WILLIAM M. Spears, simple subpopulation schemes [C]//Proc of the Third Annual Conference on Evolutionary Programming, Feb. 24- 26, 1994 at San Diego, California, USA. Singapore: World Scientific, 1994:296 - 307.
  • 10刘洪杰.[D].天津:南开大学,2002.

共引文献23

同被引文献52

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部