期刊文献+

基于遗传模拟退火的广义T-S模糊模型的混沌系统辨识 被引量:1

Chaotic system identification based on adaptable T-S fuzzy model and algorithms of GA-annealing strategy
下载PDF
导出
摘要 针对混沌系统辨识引入广义T-S模糊模型,使系统中隶属函数具有自适应性;并对T-S模糊模型前件模糊规则数、各加权值、隶属函数自适应参数进行遗传退火算法优化,使系统具有最佳结构和参数。以一维的Logistic系统和二维的Henon系统为例进行仿真分析,结果表明辨识模型能够拟合原混沌系统,收敛速度及精度良好。 The adaptable T-S fuzzy model with adaptable membership functions was proposed to identify chaotic system. The structure and parameters of this model were optimized by the algorithms of GA-Annealing strategy. The simulations to identify chaotic systems of Logistic system and Henon system show that the identified models can approach the original systems and have rapid convergence rate and good precision.
作者 张静
机构地区 襄樊学院物理系
出处 《计算机应用》 CSCD 北大核心 2005年第11期2671-2672,2675,共3页 journal of Computer Applications
基金 湖北省教育厅科研项目(2001D69001)
关键词 混沌系统 辨识 广义T—S模糊模型 遗传退火算法 chaotic system identification adaptable T-S fuzzy model algorithms of GA-annealing strategy
  • 相关文献

参考文献6

  • 1王心元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003..
  • 2WANG H, TANAKAK K, IKEDA T. Fuzzy modeling and control of chaotic system[A]. Proceeding of IEEE International Symposium on Circuits and Systems [C],1996, 3. 209-212.
  • 3CHEN L, CHEN GR. Modeling, Prediction, and Control of Uncertain Chaotic Systems Based on Times Series[J]. IEEE Transactions on Circuits and Systems, 2000, 47(10): 1527-1531.
  • 4GENCAY R. Nonlinear prediction of noise time series with feedforward and networks[J]. Physics Letters A, 1994, 187: 397-403.
  • 5GENCAY R, TUNG L. Nonlinear modeling and prediction withfeedforward and recurrent networks[J]. Physics D, 1997, 108: 119-134.
  • 6郭会军,刘君华.基于GA-Fuzzy的混沌系统辨识研究[J].系统仿真学报,2004,16(6):1323-1325. 被引量:6

二级参考文献10

  • 1Goldberg D. Genetic Algorithm in Search Optimization and Machine Learning [M]. Adddison-Wesley, Reading, 1989.
  • 2Magne Setnes, Hans Roubos. GA-Fuzzy Modeling and Classification: Complexity and Performance [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 509-522.
  • 3Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Physics Letter A, 1994, 185(1): 77-85.
  • 4Tanaka K, Ikeda T, Wang H O. A Unified Approach to Controlling Chaos via an LMI-Based Fuzzy Control System Design [J]. IEEE Transaction on Circuits and Systems. I, 1998, 45(10): 1021-1040.
  • 5Chen G R. Control and synchronization of chaotic systems (a bibliography) [EB/OL]. ECE Department, Univ. Houston, TX, available from ftp: ftp.erg.uh.edu/pub/TeX/chaos.tex (login name ''anonymous'' and password: your email address.).
  • 6Wang H, Tanaka K, Ikeda T. Fuzzy modeling and control of chaotic systems [A]. Proceedings of IEEE Int. Symp. Circuits and Systems [C]. 1996, 3: 209-212.
  • 7Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans. Syst, Man, Cybernetics, 1985, 15: 116-132.
  • 8Chen L, Chen G R. Fuzzy Modeling, Prediction, and Control of Uncertain Chaotic Systems Based on Times Series [J]. IEEE Trans. Circuits and Systems. I, 2000, 47(10): 1527-1531.
  • 9Ramazan Gencay. Nonlinear prediction of noise time series with feedforward networks [J]. Physics Letters A, 1994, 187: 397-403.
  • 10Ramazan Gencay, Liu Tung. Nonlinear modeling and prediction with feedforward and recurrent networks [J]. Physica D, 1997, 108: 119-134.

共引文献5

同被引文献3

  • 1Lorenz E N.Determinstic nonperiodic flow[J].J.Atmos.Sci,1963,20:130-141.
  • 2Hao B L.(ed).Chaos[M].Singapore:World Scientific,1984:3-230.
  • 3Li Z,Zhang B,amd Mao Z Y.Strange attractors in permanent-magnet synchronous motors[A].IEEE Proceedings of 1999 International Conference on Power Electronics and Drive Systems[C],Hong Kong,1999:150-155.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部