期刊文献+

Poisson系统的辛结构 被引量:1

Symplectic Structure of Poisson System
下载PDF
导出
摘要 当Poisson系统中的Poisson矩阵是非常数时,经典的辛方法如辛Runge_Kutta方法,生成函数法一般不能保持Poisson系统的Poisson结构,利用非线性变换可把非常数Poisson结构转化成辛结构,然后任意阶的辛方法可以长时间计算Poisson系统的辛结构.自由刚体问题中Euler方程被转换成辛结构并用辛中点格式进行数值求解,数值结果给出了这种非线性变换的有效性. When the Poisson matrix of Poisson system is non-constant, classical symplectic methods, such as symplectic Runge-Kutta method, generating function method, cannot preserve the Poisson structure. The non-constant Poisson struture was transformed into the symplectic structure by the nonlinear transform. Arbitrary order symplectic method was applied to the transformed Poisson system. The Euler equation of the free rigid body problem was transformed into the symplectic structure and computed by the mid-point scheme. Numerical results show the effectiveness of the nonlinear transform.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第11期1345-1350,共6页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(104010339010300310471145)
关键词 Poisson系统 非线性变换 辛方法 自由刚体问题 Poisson system nonlinear transformation symplectic method rigid body problem
  • 相关文献

参考文献7

  • 1HONG Jia-lin. A novel numerical approach to simulate nonlinear Schroedinger equations with raring coefficients [ J ] . Applied Mathematical Letter, 2003,16: 759-765.
  • 2Feng K. Difference schemes for Hamiltonian formulation and symplectic geometry[ J]. J Comp Math,1985,4(3) : 279-289.
  • 3Feng K, Wu H M, Qin M Z, et al. Construction of canonical difference schemes for Hamiltonian formalism via generating functions[J]. J Camp Math, 1989,7(l) :71-96.
  • 4QIN Meng-zhao, Li S T.A note for Lie-Poisson Hamiltonian-Jacobi equalion and Lie-Poisson integrator[ J ] . Computers Mathematical Application, 1995,30(7) : 67-74.
  • 5McLachlan R I. Explicit Lie-Poisson integration and the Euler equations[ J]. Phys Rev Lett, 1993,71:3043-3046.
  • 6Li S T, QIN Meng- zhao. Lie-Poisson integration for rigid body dynamics[ J]. Computers Mathmatical Application, 1995,30(9) : 105-118.
  • 7Zhu W, Qin M. Poisson schemes for Hamiltonian system on Poisson manifolds[ J]. Computers Mathematical Application, 1994,27(12) :7-16.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部