期刊文献+

平面区域拟共形变换可微性的可去集

THE EXCEPTIONAL SETS FOR THE DIFFERENTIABILITY OF QU ASICONFORMAL MAPPINGS ON PLANE DOMAIN
下载PDF
导出
摘要 本文研究平面区域上K-qc映射的不可微集合的Hausdorff维数.对任何K>1,给出了平面区域上一个具体的K-qc映射,它的不可微集合的Hausdorff维数为2. This paper studies Hausdorff dimension of the exceptional sets for differentiability of K-qc mappings on plane domain. For all K〉1, the author gives an explicit K-qc mapping on plane domain with the Hausdorff dimension of its nondifferentiable set is 2.
作者 范金华
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第5期633-638,共6页 Chinese Annals of Mathematics
关键词 拟共形映射 HAUSDORFF维数 A.C.L性质 正则集 Quasiconformal mapping, Hausdorff dimension, A.C.L-property,Regular set
  • 相关文献

参考文献8

  • 1Lehto, Olli, Univalent Functions and Teichmuller Space [M], Springer-Verlag, New York,1986.
  • 2Taylor, S. J., The measure theory of random fractals [J], Math. Proc. Camb. Phil. Soc.,100(1986), 383-406.
  • 3Tricot, C., Two definitions of fractional dimension [J], Math. Proc. Camb. Phil. Soc.,91(1982), 54-74.
  • 4Zakeri, S., David maps and Huasdorff dimension [J], Ann. Acad. Sci. Fenn. Ser. A I Math., 29(2004), 121-138.
  • 5Bishop, C. J., Quasiconformal mappings which increase dimension [J], Ann. Acad. Sci.Fenn. Ser. A I Math., 24(1999), 397-407.
  • 6Gehring, F. W. & Vaisala, J., Hausdorff dimension and quasiconformal mappings [J],Y. London Math. Soc., 6(1973), 504-512.
  • 7Astala, K., Area distortion of quasiconformal mappings [J], Acta Math., 173(1994),37-60.
  • 8I Becker, J. & Pommerenke, C., On the Hausdorff dimension of quasicircles [J], Ann. Acad. Sci. Fenn. Set. A I Math., 12(1987), 329-333.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部