期刊文献+

整环上广义幂级数环的分解性质 被引量:1

FACTORIZATION IN RINGS OF GENERALIZED POWER SERIES OVER INTEGRAL DOMAINS
下载PDF
导出
摘要 设A■B是整环的扩张, (S,≤)是满足一定条件的严格偏序幺半群, [[BS,≤]]是整环B上的广义幂级数环.本文研究整环[[BS,≤]]和{f∈[[BS,≤]]|f(0)∈A}的ACCP条件和BFD性质. 结果表明,整环{f∈[[BS,≤]]|f(0)∈A}的分解性质不仅依赖于A和B的分解性质以及U(A)和U(B),而且还依赖于幺半群S的分解性质.该结果能够构造出具有某种分解性质的整环的新例子. Let A belong to B be an extension of integral domains. The author studies the ACCP and BED properitse of the integral domains [[B^S,≤]] and {f∈[[B^S,≤]]|f(0)∈A}, where (S,≤) is a strictly ordered monoid satisfies some additional conditions and [[B^S,≤]] is the ring of generalized power series over B. These factorization properies for {f∈[[B^S,≤]]|f(0)∈A} depend not holy on factorization properties in A and B, and on U(A) and U(B), but also on factorization properties in S. This result enables us to construct several new examples of these types of domains satisfying some factorization properties.
作者 刘仲奎
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第5期639-650,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10171082)教育部高等学校优秀青年教师教学科研奖励基金教育部科技创新工程重大项目培育资金资助的项目.
关键词 主理想升链条件 有界分解整环 有界分解幺半群 广义幂级数 Ascending chain conditon on principal ideals, Bounded factorization integral domain, Bounded factorization momoid, Generalized power series
  • 相关文献

参考文献1

  • 1Zhong Kui LIU Departmemt of Mathematics.Northwest Normal University,Lanzhou,730070,P.R.China E-mail:liuzk@nwnu,edu.cnYuan FAN Department of Economics,Northwest Normal Univevsity.Lanzhou,730070,P.R.China E-mail:gxsecfy@lz.gs.cninfo.net.Co-Hopfian Modules of Generalized Inverse Polynomials[J].Acta Mathematica Sinica,English Series,2001,17(3):431-436. 被引量:4

二级参考文献10

  • 1Liu,Z.K,Cheng,H.Quasi-duality for the rings of generalized power series[].Communications in Algebra.2000
  • 2PARK S.Inverse polynomials and injective covers[].Communications in Algebra.1993
  • 3Ribenboim P.Semisimple rings and Von Neumann regular rings of generalized power series[].Journal of Algebra.1997
  • 4Ribenboim P.Northerian rings of generalized power series[].Journal of Pure and Applied Algebra.1992
  • 5Ribenboim P.Special properties of generalized power series[].Journal of Algebra.1995
  • 6Varadarajan K.Hopfian and Co-Hopfian objects[].Publicacions MateMatiques.1992
  • 7Xue Weimin.Hopfian and co-Hopfian modules[].Communications in Algebra.1995
  • 8Varadarajan,K.A generalization of Hilbert’s basis Theorem[].Communications in Algebra.1982
  • 9VARADARAJAN K.A note on the Hopficity of M[X] or M[[X]][].Nat Acad SciLetters.1992
  • 10H.Tominaga.On s-unital rings[].Math JOkayama Univ.1976

共引文献3

同被引文献7

  • 1Elliott G A, Ribenboim P. Fields of generalized power series[J]. Arch. Math., 1990, 54: 365-371.
  • 2Ribenboim P. Northerian rings of generalized power series[J]. J. Pure Appl. Algebra, 1992, 79: 293-312.
  • 3Ribenboim P. Rings of generalized power series II: units and zero-divisors[J]. J. Algebra, 1994, 168: 71-89.
  • 4Ribenboim P. Special properties of generalized power series[J]. J. Algebra, 1995, 173: 566-586.
  • 5Ribenboim P. Semisimple rings and Von Neumann regular rings of generalized power series[J]. J. Algebra, 1997, 198: 327-338.
  • 6Varadarajan K. Noetherian generalized power series rings and modules[J]. Comm. Algebra, 2001, 29: 245-251.
  • 7Liu Zhongkui . Special properties of rings of generalized power series[J]. Comm. Algebra, 2004, 32: 3215-3226.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部