摘要
设A■B是整环的扩张, (S,≤)是满足一定条件的严格偏序幺半群, [[BS,≤]]是整环B上的广义幂级数环.本文研究整环[[BS,≤]]和{f∈[[BS,≤]]|f(0)∈A}的ACCP条件和BFD性质. 结果表明,整环{f∈[[BS,≤]]|f(0)∈A}的分解性质不仅依赖于A和B的分解性质以及U(A)和U(B),而且还依赖于幺半群S的分解性质.该结果能够构造出具有某种分解性质的整环的新例子.
Let A belong to B be an extension of integral domains. The author studies the ACCP and BED properitse of the integral domains [[B^S,≤]] and {f∈[[B^S,≤]]|f(0)∈A}, where (S,≤) is a strictly ordered monoid satisfies some additional conditions and [[B^S,≤]] is the ring of generalized power series over B. These factorization properies for {f∈[[B^S,≤]]|f(0)∈A} depend not holy on factorization properties in A and B, and on U(A) and U(B), but also on factorization properties in S. This result enables us to construct several new examples of these types of domains satisfying some factorization properties.
出处
《数学年刊(A辑)》
CSCD
北大核心
2005年第5期639-650,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10171082)教育部高等学校优秀青年教师教学科研奖励基金教育部科技创新工程重大项目培育资金资助的项目.
关键词
主理想升链条件
有界分解整环
有界分解幺半群
广义幂级数
Ascending chain conditon on principal ideals, Bounded factorization integral domain, Bounded factorization momoid, Generalized power series