期刊文献+

毕竟正则半群上的群同余 被引量:1

Group congruences on an eventually regular semigroup
下载PDF
导出
摘要 设S是一个半群,a∈S.如果存在x∈S,使得x=xax,则称x为a的一个弱逆.用W(a)表示a的所有弱逆的集合.本文利用元素的弱逆给出了毕竟正则半群S的群同余的若干等价刻画及一个表示.通过S的w-自共轭的、闭的,全子半群H定义了S上的一个二元关系(a,b)∈ρH(?)((?)a’∈W(a),a'b∈H),证明了如果H是S的w-自共轭的、闭的全子半群,则ρH是S上的以H为核的群同余.反过来,如果ρ是S上的群同余,则kerρ是S的w-自共轭的,闭的全子半群,并且ρ=ρkerρ. Let S be an eventually regular semigroup and α∈S. A weak inverse of S is an element x∈S such that x=xαx, denoted by W(α) the set of weak inverses of α. A representation and some characterizations of group congruences on the eventually regular semigroup are given by means of weak inverse. Define a relation on S: (α, b) ∈ ρH〈=〉 ( α′∈W(α), α′b∈H). It is shown that if H is a ω-self-conjugate, closed and full subsemigroup of S, then ρH is a group congruence on S and ker ρH=H. Conversely, if ρ is a group congruence on S, then ker ρ is a ω-self-conjugate, closed and full subsemigroup of S and ρ=ρkerρ.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期117-119,共3页 Journal of Lanzhou University(Natural Sciences)
关键词 毕竟正则半群 弱逆 ω-自共轭 闭子半群 群同余 eventually regular semigroup weak inverse ω-self-conjugate closed subsemigroup group congruence
  • 相关文献

参考文献6

  • 1Edwards P M. Eventually regular semigroups[J].Bull Austral Math Soc, 1983, 28: 23-38.
  • 2Edwards P M. Congruence and Greens relations on eventually regular semigroups[J]. J Austral Soc(Series A), 1987, 43: 64-69.
  • 3Edwards P M. On the lattice of congruence on an eventually regular semigroup[J]. J Austral Soc(Series A), 1985, 38: 281-286.
  • 4Hanumantha R S, Lakshmi P. Group congruences on eventually regular semigroup[J]. J Austral Math Soc(Series A), 1988, 45: 320-325.
  • 5Latorre D R. Group congruences on regular semigroups[J]. Semigroup Forum, 1982, 24: 327-340.
  • 6Peter M H. Techniques of Semigroup Theory[M].New York: Oxford University Press, 1992.

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部