摘要
本文考虑如下的Macinkiewicz积分算子其中在一定的条件下证明它是在Herz空间(K|·)qa,q上有界同时也是从Herz空间(K|·)1a,p到弱Herz空间W(K|·)1a,p上有界.
In this paper, we consider the Marcinkiewicz integral operator with rough kernel defined by μΩ(f)(x){∫0^∞|FΩ
,t(x)|^2t^-3dt}^1/2,FΩ
,t(x)=∫|x-y|≤tΩ
(x-y)|x-y|^-n+2f(y)dy and prove that is bounded on the Herz ;spaces Kq^α,q as well as bounded from Kq^α,p to WK 1^α,p under certain sufficient conditions.
出处
《数学进展》
CSCD
北大核心
2005年第5期591-599,共9页
Advances in Mathematics(China)
基金
Supported by NSFC(No.19631080,No.19971010,No.1999075105)the Natural Science Foundations of Zhejiang Provinence.