期刊文献+

超凸空间中的连续选择定理与耦合定理(英文) 被引量:49

Continuous Selection Theorems and Coincidence Theorems on Hyperconvex Spaces
下载PDF
导出
摘要 本文给出了超凸空间中的连续选择定理与耦合定理,并得到了它们的证明. 作为应用,我们给出了超凸空间中的不动点定理与截口定理. In this paper, some continuous selection theorems and coincidence theorems are proved on Hyperconvex spaces. As applications, some fixed point theorems and section theorems axe obtained on Hyperconvex spaces.
出处 《数学进展》 CSCD 北大核心 2005年第5期614-618,共5页 Advances in Mathematics(China)
基金 Supported by Natural Science Foundation of Zhejiang Province(No.103098).
关键词 超凸空间 连续选择定理 耦合定理 不动点定理 hyperconvex space continuous selection theorem coincidence theorem fixed point theorem
  • 相关文献

参考文献24

  • 1Aronszajn N, panitchpakdi P. Extension of uniformly continuous transformations and hyperconvex metric spaces [J]. Pacific J. Math., 1956, 6: 405-439.
  • 2Sine R C. On nonlinear contraction semigroups in sup-norm spaces [J]. Nonlinear Anal., 1979: 3: 885-890.
  • 3Soardi P M. Existence of fixed points of nonexpansive mappings in certain banach lattices [J]. Proc. Amer. Math. Soc., 1979, 73: 25-29.
  • 4Khamsi M A. Kirk W A. Carlos Martinez Yanez. Fixed point and selection theorems in hyperconvex spaces [J]. Proc. Amer. Math. Soc., 2000, 128: 3275-3283.
  • 5Bailon J B. Nonexpansive mapping and hyperconvex spaces. in: R. F. Brown (Ed.); Fixed point theory and its applications [J]. Vol. 72, Contemp. Maths.; Amer. Math. Soc. Providence, RI 1988, 11-19.
  • 6Goebel K, Kirk W A. Topies in Metric Fixed Point Theory [M]. Cambridge University Press, Cambridge, 1990.
  • 7Khamsi M A, Lin M, Sine R C. On the fixed points of commuting nonexpansive maps in hyperconvex spaces [J]. J. Math. Anal. Appl., 1992, 168: 372-380.
  • 8Khamsi M A, Reich S. Nonexpansive mappings and semigroups in hyperconvex spaces [J]. Math. Japon., 1990, 35: 467-471.
  • 9Kirk W A. Fixed point theory for nonexpansive mappings. in: R. C. Sine(Ed.); Fixed points and nonexpansive mappings [J]. Contemp. Math., Amer. Math. Soc. Providence, RI 1983, 18: 121-140.
  • 10Kirk W A. Continuous mappings in compact hyperconvex metric spaces [J].Numer. Funct. Anal. Optimiz. 1996, 17: 599-603.

同被引文献230

引证文献49

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部