期刊文献+

IX_r(a)的有限型IX_r~°(a)的未定Weyl群 被引量:6

The Indefinite Weyl Group of Finite Type IX_r~°(a) of Kac-Moody Algebras IX_r(a)
下载PDF
导出
摘要 本文首先给出Kac-Moody代数IXr(a)的有限型I(?)r(a)的未定Weyl群的定义,然后对a≥5证明了不定型李代数,IXr(a)的Weyl群W同构于有限型I(?)r(a)的未定Weyl群. In this paper we give the defination of the indefinite Weyl group of finite type IXr°(α). We show the isomorphism of the Weyl group W of the Kac-Moody algebra IXr(α) and the indefinite Weyl group of the finite type IXr°(α) Lie algebral for α≥5.
作者 李立 王书琴
出处 《数学进展》 CSCD 北大核心 2005年第5期619-626,共8页 Advances in Mathematics(China)
基金 黑龙江省自然科学基金.
关键词 WEYL群 未定Weyl群 基本附房 Weyl group indefinite Weyl group basic co-house
  • 相关文献

参考文献6

  • 1BenKart G, Kang S J, Misra K C. Graded Lie algebras of Kac-Moody type [J]. Adv. in Math. (China),1993, 97(2): 154-190.
  • 2BenKart G, Kang S J, Misra K C. Infinite Kac-Moody algebras of classical type [J]. Adv in Math. (China),to appear.
  • 3Lu Caihui. The imaginary root system of Kac-Moody algebra IAn-1(a) [Z]. Communication in Algebra. 1996, 24(1): 29-54.
  • 4Zhang Hechun, Zhao Kaiming. Root systems of a class of Kac-Moody algebras [J]. to appear in Algebra Colloquium, 1994, 4.
  • 5Kac V G. Infinite Dimensional Lie Algebras [M]. Second edition, Cembriage University Press, 1985.
  • 6Lu Caihui, Zhao Kaiming. The Weyl group of Kac-Moody algebras IXr(a) [J]. Journal of Capital Normal University, 1994, 15: 5-13.

同被引文献18

  • 1刘宇红,王增辉.矩阵的初等行变换在标准化经济效果中的应用[J].标准化报道,1995,16(4):25-27. 被引量:1
  • 2Allison B N, Azam S, Berman S, Gao Y, Pianzola A. Extended affine Lie algebras and their root systems[J]. Memoir Amer Math Soc, 1997(126): 605-635.
  • 3Kac V G. In finite Dimensional Lie Algebras[M]. Second edition, Cambridge University Press, 1985.
  • 4Berman S, Gao Y and Tan S. A unified view of some vertex operator constructions[J]. Israel J Math, 2003, 134: 29-60.
  • 5S Berman, Y Gao and S Tan.A unified view of some vertex operator constructions [J]. Is rael J. Math. 134 (2003),29- 60.
  • 6J. Lepowsky and H.-S. Li, Introduction to Vertex Operator Algebras and Their Representations[C]//Progress in Math., Vol. 227,Birkh Hauser, Boston ,2003.
  • 7Berman S,Gao Y,Tan S.A unified view of some vertex operator constructions[J].Israel J.Math,2003,134(1):29-60.
  • 8LiLi,Chunyan Wang,Xiufeng Du.Clifford algebra realization of certain infinite-dimensional Lie algebras[J].Algebra Colloquium,2011,18(1):105-120.
  • 9Kac-Moody.代数导引[M].北京:科学出版社,1993.
  • 10S.Berman Y.Gao and S.Tan,A unified view of some vertex operator constructions[J].Israel J Math.2003,134:29-60.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部