期刊文献+

一种基于分布式数据仓库的文件集快速更新算法 被引量:1

A fast refreshment algorithm for filesets based on distributed data warehouse
下载PDF
导出
摘要 异构数据源整合是企业数据共享的前提,而高效的数据更新不仅节约系统开销还能提供实时数据。在分布式数据仓库的数据预处理区快速更新变动的数据是一个非常重要的热点问题,利用增量文件集的快速更新算法进行ETL设计可以加快数据更新的速度,消除异构数据模式的不一致和语义冲突问题,成套电器集团公司的成功应用证明了该算法的有效性。 Integrating heterogeneous data source is a precondition to share for enterprise data, but highly-efficient data updating is not only economical in saving system expenses, but also available in offering real- time datum. Data change at a faster speed in distributed Data Warehouse is one of the very important hot issues. Developing the ETL design by utilizing fast algorithm of increment filesets can accelerate the speed of data change, and delete heterogeneous data between nonconformity and semanteme conflict, it proves the validity of algorithm by the successful application with the corporation working on sets of electric apparatus.
出处 《制造业自动化》 北大核心 2005年第10期13-16,共4页 Manufacturing Automation
基金 国家自然科学基金资助(50475117) 天津科技发展计划重大攻关目(033181611)(0431835116)
关键词 分布式数据仓库 cliff-matoh算法 增量更新 文件集 ETL distributed data warehouse diff-match algorithm incremental refreshment fileset ETL
  • 相关文献

参考文献5

  • 1JI AWEI H, MICHELINE K. Data mining concepts and techniques [M].China Machine Press, 2001:44-46.
  • 2INMON W H.Building, data warehouse[M].Second Edition,John Wiley, 1996.
  • 3BOYER R S, MOORE J S. A fast string searching algorithm[J]. Comm. ACM20(10) 1977: 762-772.
  • 4WU S, UDI M. A fast algorithm for multi-pattern searching[R].The Computer Science Department, The University of Arizona, 1994.
  • 5SUN K, YANGGON K. A fast multiple string-pattern matching algorithm[A], Proceedings of the 17 AoM/IAoM International Comference on Computer Science, May 1999.

同被引文献14

  • 1刘学军,徐宏炳,董逸生,王永利,钱江波.挖掘数据流中的频繁模式[J].计算机研究与发展,2005,42(12):2192-2198. 被引量:25
  • 2杨秀金,孟军.基于频繁模式表的增量更新算法[J].计算机应用,2006,26(B06):110-112. 被引量:2
  • 3王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法[J].软件学报,2007,18(4):884-892. 被引量:33
  • 4周晓丹,冯少荣,薛永生.Oracle 10g RAC核心技术研究与分析[J].计算机工程,2007,33(7):53-55. 被引量:13
  • 5Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding Frequent Items in Data Streams [ Z ]. This work was done while the author was at Google Inc.
  • 6Oracle Enterprise Manager 10g Grid Control [Z]. 2005:2 - 11.
  • 7Amit Manjhi, Vladislav Shkapenyuk Kedar Dhamdhere, Christopher Olston. Finding (Recently) Frequent Items in Distributed Data Streams [Z]. Proceedings of the 21st International Conference on Data Engineering ( ICDE 2005 ). IEEE . 2005:84 -4627/05.
  • 8Hua-Fu Li, Chin-Chuan Ho, Fang-Fei Kuo, et al. A New Algorithm for Maintaining Closed Frequent Itemsets in Data Streams by Incremental Updates[ Z]. Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06) ,2006.
  • 9Charikar M, Chen K, Farach-Cohon M. Finding frequent items in data streams [A]. In : Widmayer P, Ruiz FT, Bueno RM, Hennessy M, Eidenbenz S, Conejo R,eds. Proc. of the Int'l Colloquium on Automata, Languages and Programming [ C ]. Malaga : Springer-Verlag,2002 : 693 - 703.
  • 10Cormode G,Muthukrishnan S. What' s hot and what' s not : Tracking most frequent items dynamically [A]. In : Halevy AY,Ives ZG, Doan AH,eds. Proc. of the 22nd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems [ C ]. San Diego: ACM Press, 2003 : 296 - 306.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部