摘要
给出了一般纠缠的WGHZ态,然后利用所得一般WGHZ态导出了一般纠缠的不同的W态,得到了不同退纠缠的条件,一般WGHZ态取不同的复系数为零时,有不同的退纠缠,并可得到不同的W态和不同的一般的Bell基,以上对退纠缠的讨论结果与通常用密度矩阵的可分性得的退纠缠条件一致.通过构造一个5×5对角投影变换矩阵,解决了使用一般纠缠量子信道并不再引入辅助态时,态畸变的恢复问题,并且这里的对角投影变换矩阵UM也与以往文献的不同,而且还更直接,进而解决了不引入辅助态并使用一般纠缠信道纠缠的一般WGHZ态的概率隐形传态的问题,本文关于对角的投影变换矩阵UM的变换方法等可以直接推广到任意一般纠缠信道的一般纠缠态的概率隐形传态.
A general WGHZ state is given, different entanglement W states are deduced by means of the general WGHZ state, different disentanglement conditions are obtained. When taking different complex coefficients of the general WGHZ state as zero, there are different disentanglements, and different W states and different Bell basic vectors are achieved. The above disentanglement results agree with the results obtained from the usual disentanglement condition of decomposable property of density matrices. By constructing a 5 × 5 diagonal projection transformation matrix, the problem of the recovery of state distortion is salved when using general entanglement channels and not introducing an accessorial state, and the diagonal projection transformation matrix UM is different to that of the other references and is a direct transformion matrix. Furthermore, the problem of prohabilistic teleportation of a general WGHZ state is solved without introducing an accessorial state using the general entanglement channels. The diagonal projection transformation matrix method developed in this paper may be directly generalized to probabilistic teleportation of general entanglement states.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2005年第10期4517-4523,共7页
Acta Physica Sinica